eupolicy.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
This Mastodon server is a friendly and respectful discussion space for people working in areas related to EU policy. When you request to create an account, please tell us something about you.

Server stats:

225
active users

#reinforcement

0 posts0 participants0 posts today
Philo Sophies<p><a href="https://troet.cafe/tags/Zoomposium" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Zoomposium</span></a> with Dr. <a href="https://troet.cafe/tags/Patrick" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Patrick</span></a> <a href="https://troet.cafe/tags/Krau%C3%9F" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Krauß</span></a>: Building instructions for <a href="https://troet.cafe/tags/artificial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>artificial</span></a> <a href="https://troet.cafe/tags/consciousness" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>consciousness</span></a></p><p>Transferring the various stages of <a href="https://troet.cafe/tags/Damasio" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Damasio</span></a>'s <a href="https://troet.cafe/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> of consciousness 1:1 into concrete <a href="https://troet.cafe/tags/schematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>schematics</span></a> for <a href="https://troet.cafe/tags/deeplearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>deeplearning</span></a>. To this end, strategies such as <a href="https://troet.cafe/tags/feedforward" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>feedforward</span></a> connections, <a href="https://troet.cafe/tags/recurrent" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>recurrent</span></a> <a href="https://troet.cafe/tags/connections" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>connections</span></a> in the form of <a href="https://troet.cafe/tags/reinforcement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>reinforcement</span></a> learning and <a href="https://troet.cafe/tags/unsupervised" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>unsupervised</span></a> <a href="https://troet.cafe/tags/learning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>learning</span></a> are used to simulate the <a href="https://troet.cafe/tags/biological" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>biological</span></a> <a href="https://troet.cafe/tags/processes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>processes</span></a> of the <a href="https://troet.cafe/tags/neuronal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuronal</span></a> <a href="https://troet.cafe/tags/networks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>networks</span></a>. </p><p>More at: <a href="https://philosophies.de/index.php/2023/10/24/bauanleitung-kuenstliches-bewusstsein/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">philosophies.de/index.php/2023</span><span class="invisible">/10/24/bauanleitung-kuenstliches-bewusstsein/</span></a></p><p>or: <a href="https://youtu.be/rXamzyoggCo" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">youtu.be/rXamzyoggCo</span><span class="invisible"></span></a></p>
Philo Sophies<p><a href="https://planetearth.social/tags/Zoomposium" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Zoomposium</span></a> with Dr. <a href="https://planetearth.social/tags/Patrick" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Patrick</span></a> <a href="https://planetearth.social/tags/Krau%C3%9F" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Krauß</span></a>: Building instructions for <a href="https://planetearth.social/tags/artificial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>artificial</span></a> <a href="https://planetearth.social/tags/consciousness" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>consciousness</span></a></p><p>Transferring the various stages of <a href="https://planetearth.social/tags/Damasio" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Damasio</span></a>'s <a href="https://planetearth.social/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> of consciousness 1:1 into concrete <a href="https://planetearth.social/tags/schematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>schematics</span></a> for <a href="https://planetearth.social/tags/deeplearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>deeplearning</span></a>. To this end, strategies such as <a href="https://planetearth.social/tags/feedforward" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>feedforward</span></a> connections, <a href="https://planetearth.social/tags/recurrent" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>recurrent</span></a> <a href="https://planetearth.social/tags/connections" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>connections</span></a> in the form of <a href="https://planetearth.social/tags/reinforcement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>reinforcement</span></a> learning and <a href="https://planetearth.social/tags/unsupervised" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>unsupervised</span></a> <a href="https://planetearth.social/tags/learning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>learning</span></a> are used to simulate the <a href="https://planetearth.social/tags/biological" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>biological</span></a> <a href="https://planetearth.social/tags/processes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>processes</span></a> of the <a href="https://planetearth.social/tags/neuronal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuronal</span></a> <a href="https://planetearth.social/tags/networks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>networks</span></a>. </p><p>More at: <a href="https://philosophies.de/index.php/2023/10/24/bauanleitung-kuenstliches-bewusstsein/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">philosophies.de/index.php/2023</span><span class="invisible">/10/24/bauanleitung-kuenstliches-bewusstsein/</span></a></p><p>or: <a href="https://youtu.be/rXamzyoggCo" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">youtu.be/rXamzyoggCo</span><span class="invisible"></span></a></p>
Philo Sophies<p><a href="https://mastodon.world/tags/Zoomposium" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Zoomposium</span></a> with Dr. <a href="https://mastodon.world/tags/Patrick" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Patrick</span></a> <a href="https://mastodon.world/tags/Krau%C3%9F" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Krauß</span></a>: Building instructions for <a href="https://mastodon.world/tags/artificial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>artificial</span></a> <a href="https://mastodon.world/tags/consciousness" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>consciousness</span></a></p><p>Transferring the various stages of Damasio's theory of consciousness 1:1 into concrete <a href="https://mastodon.world/tags/schematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>schematics</span></a> for <a href="https://mastodon.world/tags/deep" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>deep</span></a> <a href="https://mastodon.world/tags/learning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>learning</span></a>. To this end, strategies such as <a href="https://mastodon.world/tags/feed" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>feed</span></a>-forward connections, <a href="https://mastodon.world/tags/recurrent" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>recurrent</span></a> <a href="https://mastodon.world/tags/connections" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>connections</span></a> in the form of <a href="https://mastodon.world/tags/reinforcement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>reinforcement</span></a> learning and <a href="https://mastodon.world/tags/unsupervised" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>unsupervised</span></a> learning are used to simulate the <a href="https://mastodon.world/tags/biological" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>biological</span></a> <a href="https://mastodon.world/tags/processes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>processes</span></a> of the <a href="https://mastodon.world/tags/neuronal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuronal</span></a> <a href="https://mastodon.world/tags/networks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>networks</span></a>. </p><p>More at: <a href="https://philosophies.de/index.php/2023/10/24/bauanleitung-kuenstliches-bewusstsein/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">philosophies.de/index.php/2023</span><span class="invisible">/10/24/bauanleitung-kuenstliches-bewusstsein/</span></a></p><p>or: <a href="https://youtu.be/rXamzyoggCo" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">youtu.be/rXamzyoggCo</span><span class="invisible"></span></a></p>
Philo Sophies<p><a href="https://mastodon.world/tags/Zoomposium" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Zoomposium</span></a> mit Dr. <a href="https://mastodon.world/tags/Patrick" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Patrick</span></a> <a href="https://mastodon.world/tags/Krau%C3%9F" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Krauß</span></a>: „Bauanleitung <a href="https://mastodon.world/tags/K%C3%BCnstliches" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Künstliches</span></a> <a href="https://mastodon.world/tags/Bewusstsein" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Bewusstsein</span></a>“</p><p>Die verschiedenen Stufen von Damasios Theorie des Bewusstseins 1:1 in konkrete <a href="https://mastodon.world/tags/Schaltpl%C3%A4ne" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Schaltpläne</span></a> für ein <a href="https://mastodon.world/tags/Deep" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deep</span></a> <a href="https://mastodon.world/tags/Learning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Learning</span></a> zu überführen. Hierzu werden Strategien wie <a href="https://mastodon.world/tags/feed" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>feed</span></a>-forward connections, <a href="https://mastodon.world/tags/recurrent" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>recurrent</span></a> <a href="https://mastodon.world/tags/connections" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>connections</span></a> in Form von <a href="https://mastodon.world/tags/reinforcement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>reinforcement</span></a> learning und <a href="https://mastodon.world/tags/unsupervised" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>unsupervised</span></a> learning angewendet, um die <a href="https://mastodon.world/tags/biologischen" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>biologischen</span></a> <a href="https://mastodon.world/tags/Prozesse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Prozesse</span></a> der <a href="https://mastodon.world/tags/neuronalen" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuronalen</span></a> <a href="https://mastodon.world/tags/Netze" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Netze</span></a> zu simulieren. </p><p>Mehr auf: <a href="https://philosophies.de/index.php/2023/10/24/bauanleitung-kuenstliches-bewusstsein/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">philosophies.de/index.php/2023</span><span class="invisible">/10/24/bauanleitung-kuenstliches-bewusstsein/</span></a></p><p>oder: <a href="https://youtu.be/rXamzyoggCo" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">youtu.be/rXamzyoggCo</span><span class="invisible"></span></a></p>
JMLR<p>'A New, Physics-Informed Continuous-Time Reinforcement Learning Algorithm with Performance Guarantees', by Brent A. Wallace, Jennie Si.</p><p><a href="http://jmlr.org/papers/v25/24-0017.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/24-0017.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/control" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>control</span></a> <a href="https://sigmoid.social/tags/reinforcement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>reinforcement</span></a> <a href="https://sigmoid.social/tags/exploration" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>exploration</span></a></p>
JMLR<p>'Empirical Design in Reinforcement Learning', by Andrew Patterson, Samuel Neumann, Martha White, Adam White.</p><p><a href="http://jmlr.org/papers/v25/23-0183.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-0183.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/reinforcement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>reinforcement</span></a> <a href="https://sigmoid.social/tags/experiments" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>experiments</span></a> <a href="https://sigmoid.social/tags/hyperparameters" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hyperparameters</span></a></p>
JMLR<p>'Instrumental Variable Value Iteration for Causal Offline Reinforcement Learning', by Luofeng Liao, Zuyue Fu, Zhuoran Yang, Yixin Wang, Dingli Ma, Mladen Kolar, Zhaoran Wang.</p><p><a href="http://jmlr.org/papers/v25/22-0965.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/22-0965.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/reinforcement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>reinforcement</span></a> <a href="https://sigmoid.social/tags/unobserved" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>unobserved</span></a> <a href="https://sigmoid.social/tags/causal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>causal</span></a></p>
JMLR<p>'Value-Distributional Model-Based Reinforcement Learning', by Carlos E. Luis, Alessandro G. Bottero, Julia Vinogradska, Felix Berkenkamp, Jan Peters.</p><p><a href="http://jmlr.org/papers/v25/23-0913.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-0913.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/reinforcement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>reinforcement</span></a> <a href="https://sigmoid.social/tags/quantile" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantile</span></a> <a href="https://sigmoid.social/tags/learns" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>learns</span></a></p>