Rémi Eismann<p>One day, one decomposition<br>A000124: Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/Central_polygonal_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/Central_</span><span class="invisible">polygonal_numbers.html</span></a><br>3D graph Gen, threejs animation ➡️ <a href="https://decompwlj.com/3DgraphGen/Central_polygonal_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Centr</span><span class="invisible">al_polygonal_numbers.html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/Central_polygonal_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">Central_polygonal_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/Lazy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Lazy</span></a> <a href="https://mathstodon.xyz/tags/Caterer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Caterer</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/javascript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>javascript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/central" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>central</span></a> <a href="https://mathstodon.xyz/tags/polygonal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polygonal</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a></p>