eupolicy.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
This Mastodon server is a friendly and respectful discussion space for people working in areas related to EU policy. When you request to create an account, please tell us something about you.

Server stats:

205
active users

#graphtheory

2 posts1 participant0 posts today
Rasmus<p>After 23 growth steps the group closes up with 1156 tiles.</p><p>(2/2)</p><p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/graphtheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphtheory</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a></p>
Rasmus<p>Best effort embedding of a pentagonal {5,5} tiling in 𝑅³ of a genus 290 surface.</p><p>The tiling is self-dual and a partial Cayley surface complex of the group: </p><p>⟨ f₁,f₂,f₃,f₄,f₅ ∣ f₁², f₂², f₃², f₄², f₅², f₂f₅, (f₁f₄)², f₁f₂f₃f₄f₅, (f₂f₃)¹⁷ ⟩ </p><p>The image and animation show growth step 16 and 17. </p><p>(1/2)</p><p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/graphtheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphtheory</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a></p>
Rasmus<p>Slightly perturbed monohedral skew quadragonal tiling embeddable in 𝑅³ as a double cover of an infinite surface.</p><p>The tiling is the dual tessellation of a partial Cayley surface complex of the group: </p><p>G = ⟨ f₁, f₂, t₁ ∣ f₁², t₁³, f₂², (f₁f₂t₁⁻¹)², (f₁f₂t₁f₂)³, (f₁t₁f₁t₁⁻¹)² ⟩</p><p>(1/n)</p><p><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/graphtheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphtheory</span></a></p>
Grant_H<p><a href="https://mastodon.social/tags/mathstodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathstodon</span></a> <a href="https://mastodon.social/tags/graphTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphTheory</span></a> <br>I am working on writing a GUI for editing edge-representation <a href="https://mastodon.social/tags/Hypergraphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hypergraphs</span></a> Anyone played with drawing these? I have a couple of ways of approaching this, and would like to choose something useful and useable beyond just my rather narrow experience and application.</p><p>I am writing in <a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> using <a href="https://mastodon.social/tags/pyside6" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pyside6</span></a> and can (within reason!) make it do what is best for editing and thinking.</p><p>Any links/ references/ resources/ boosts welcome.</p>
Daniel Mietchen<p>Interesting circumscription of the audience of a technical document:<br><a href="https://www.w3.org/TR/rdf-canon/#how-to-read" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">w3.org/TR/rdf-canon/#how-to-re</span><span class="invisible">ad</span></a></p><p><a href="https://mastodon.social/tags/standard" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>standard</span></a> <a href="https://mastodon.social/tags/RDF" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RDF</span></a> <a href="https://mastodon.social/tags/graphtheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphtheory</span></a> <a href="https://mastodon.social/tags/weekend" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>weekend</span></a></p>
Rasmus<p>Monohedral skew kite tiling of a surface embedded around a diamond lattice.</p><p>The tiling is the dual tessellation of a partial Cayley surface complex of the group: </p><p>G = ⟨ f₁, f₂, t₁ | (t₁)³, (f₁f₂)³, (f₂)², (f₁f₂t₁⁻¹)², (f₁t₁f₂t₁)³, (f₁)² ⟩</p><p>(1/n)<br><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/graphtheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphtheory</span></a></p>
karo<p>Dive into the fascinating world of graph theory with this enlightening video from Numberphile! <a href="https://youtu.be/4-eXjTH6Mq4" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">youtu.be/4-eXjTH6Mq4</span><span class="invisible"></span></a> <a href="https://ioc.exchange/tags/Numberphile" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Numberphile</span></a> <a href="https://ioc.exchange/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GraphTheory</span></a> <a href="https://ioc.exchange/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a> <a href="https://ioc.exchange/tags/Science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Science</span></a> <a href="https://ioc.exchange/tags/Education" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Education</span></a> <a href="https://ioc.exchange/tags/Learning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Learning</span></a></p>
Fractal Kitty<p>A new post on the math blog! I built a couple of toys to play with as well. </p><p>Inquiries week 4: Triangulating Triangles</p><p><a href="https://www.fractalkitty.com/inquiries-week-4-triangulate-the-triangle/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">fractalkitty.com/inquiries-wee</span><span class="invisible">k-4-triangulate-the-triangle/</span></a></p><p><a href="https://mathstodon.xyz/tags/indieweb" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>indieweb</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/colorings" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>colorings</span></a> <a href="https://mathstodon.xyz/tags/graphTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphTheory</span></a> <a href="https://mathstodon.xyz/tags/triangles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangles</span></a> <a href="https://mathstodon.xyz/tags/inquiry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>inquiry</span></a> <a href="https://mathstodon.xyz/tags/mtbos" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mtbos</span></a> <a href="https://mathstodon.xyz/tags/iteachmath" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>iteachmath</span></a> <a href="https://mathstodon.xyz/tags/mathtoys" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathtoys</span></a></p>
Joshua Grochow<p>Awesome visualization, totally well-done video of the state space of (sliding block) puzzles</p><p><a href="https://youtu.be/YGLNyHd2w10?si=75QT_ZwIsrPlaQNf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">youtu.be/YGLNyHd2w10?si=75QT_Z</span><span class="invisible">wIsrPlaQNf</span></a></p><p>(H/t Dan Larremore via <span class="h-card" translate="no"><a href="https://sigmoid.social/@jugander" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>jugander</span></a></span> on bsky)</p><p><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/games" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>games</span></a> <a href="https://mathstodon.xyz/tags/puzzles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>puzzles</span></a> <a href="https://mathstodon.xyz/tags/topology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>topology</span></a> <a href="https://mathstodon.xyz/tags/combinatorics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>combinatorics</span></a> <a href="https://mathstodon.xyz/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GraphTheory</span></a> <a href="https://mathstodon.xyz/tags/ComplexSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComplexSystems</span></a> <a href="https://mathstodon.xyz/tags/emergence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>emergence</span></a></p>
Eric Maugendre<p>The new algorithm for directed cheapest routes "slices the graph into layers, moving outward from the source like Dijkstra’s. But rather than deal with the whole frontier at each step, it uses the Bellman-Ford algorithm to pinpoint influential nodes, moves forward from these nodes to find the shortest paths to others, and later comes back to other frontier nodes. It doesn’t always find the nodes within each layer in order of increasing distance, so the sorting barrier doesn’t apply. And if you chop up the graph in the right way, it runs slightly faster than the best version of Dijkstra’s algorithm. It’s considerably more intricate, relying on many pieces that need to fit together just right. But curiously, none of the pieces use fancy mathematics."</p><p><a href="https://www.quantamagazine.org/new-method-is-the-fastest-way-to-find-the-best-routes-20250806/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">quantamagazine.org/new-method-</span><span class="invisible">is-the-fastest-way-to-find-the-best-routes-20250806/</span></a></p><p><a href="https://hachyderm.io/tags/graphTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphTheory</span></a> <a href="https://hachyderm.io/tags/shortestPath" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shortestPath</span></a> <a href="https://hachyderm.io/tags/navigation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>navigation</span></a> <a href="https://hachyderm.io/tags/networks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>networks</span></a> <a href="https://hachyderm.io/tags/computing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computing</span></a> <a href="https://hachyderm.io/tags/CS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CS</span></a> <a href="https://hachyderm.io/tags/computerScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computerScience</span></a> <a href="https://hachyderm.io/tags/algorithmics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmics</span></a> <a href="https://hachyderm.io/tags/algorithmic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmic</span></a> <a href="https://hachyderm.io/tags/algorithms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithms</span></a> <a href="https://hachyderm.io/tags/algorithm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithm</span></a></p>
Harald Sack<p>In our last <a href="https://sigmoid.social/tags/ISE2025" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ISE2025</span></a> lecture last week, we were discussing what makes a node "important" in a knowledge graph. A simple heuristics can be borrowed from graph theory or communication theory: Degree Centrality</p><p>Interestingly, in Wikidata In-degree centrality states Jane Austen to be to most "important" female author, while Out-degree centrality claims J.K. Rowling as being more "important" ;-) </p><p><a href="https://sigmoid.social/tags/knowledgegraphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>knowledgegraphs</span></a> <a href="https://sigmoid.social/tags/semanticweb" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>semanticweb</span></a> <a href="https://sigmoid.social/tags/graphtheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphtheory</span></a> <a href="https://sigmoid.social/tags/feminism" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>feminism</span></a> <a href="https://sigmoid.social/tags/eyeofthebeholder" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>eyeofthebeholder</span></a> <span class="h-card" translate="no"><a href="https://fedihum.org/@sourisnumerique" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>sourisnumerique</span></a></span> <span class="h-card" translate="no"><a href="https://sigmoid.social/@enorouzi" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>enorouzi</span></a></span></p>
Grant_H<p>If I did everything right, I have a public alpha release of my graph (nodes and edges) editor<br>With source and windows binary !<br>(I hope)<br>It's a rolling chassis, to explore the design patterns for the ultimate goal of a <a href="https://mastodon.social/tags/higraph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>higraph</span></a> editor.</p><p><a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://mastodon.social/tags/PySide6" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PySide6</span></a> <a href="https://mastodon.social/tags/graphTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphTheory</span></a></p><p><a href="https://github.com/ghillebrand/qtPyGraphEdit/tree/v0.0.0-alpha" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/ghillebrand/qtPyGra</span><span class="invisible">phEdit/tree/v0.0.0-alpha</span></a></p>
Fractal Kitty<p>A friend showed me a leetcode problem yesterday at the Recurse Center:</p><p><a href="https://leetcode.com/problems/minimum-height-trees/description/?envType=problem-list-v2&amp;envId=rab78cw1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">leetcode.com/problems/minimum-</span><span class="invisible">height-trees/description/?envType=problem-list-v2&amp;envId=rab78cw1</span></a></p><p>Which led me to play for a bit on paper, then drafted a rough a visual toy:</p><p><a href="https://codepen.io/fractalkitty/live/WbvJKgy" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">codepen.io/fractalkitty/live/W</span><span class="invisible">bvJKgy</span></a></p><p>(I haven't actually done any leetcode problems because I often end up on paper and down rabbit holes)</p><p><a href="https://mathstodon.xyz/tags/recurseCenter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>recurseCenter</span></a> <a href="https://mathstodon.xyz/tags/graphtheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphtheory</span></a> <a href="https://mathstodon.xyz/tags/trees" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>trees</span></a> <a href="https://mathstodon.xyz/tags/codepen" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>codepen</span></a> <a href="https://mathstodon.xyz/tags/leetcode" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>leetcode</span></a></p>
Peter Cock<p>Blog post: <a href="https://astrobeano.blogspot.com/2025/05/ergo-mech-keyboard-wiring-using-tutte-coxeter-graph.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">astrobeano.blogspot.com/2025/0</span><span class="invisible">5/ergo-mech-keyboard-wiring-using-tutte-coxeter-graph.html</span></a></p><p>Building on T.G. Marbach's <a href="https://fediscience.org/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GraphTheory</span></a> idea to use the Heawood graph for a split keyboard <a href="https://fediscience.org/tags/MechanicalKeyboard" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MechanicalKeyboard</span></a> (see <a href="https://astrobeano.blogspot.com/2025/05/topology-meets-custom-keyboard-circuit.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">astrobeano.blogspot.com/2025/0</span><span class="invisible">5/topology-meets-custom-keyboard-circuit.html</span></a>), I've applied the larger Tutte-Coxeter (Tutte 8 Cage) to sketch diode-free 34, 36, 40, &amp; 42 key <a href="https://fediscience.org/tags/ErgonomicKeyboard" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ErgonomicKeyboard</span></a> PCB layouts.</p>
Fractal Kitty<p>I am starting a new series on the blog for inquiries in math. I posted the first one today:</p><p><a href="https://www.fractalkitty.com/inquiries-week-1-circle-shading/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">fractalkitty.com/inquiries-wee</span><span class="invisible">k-1-circle-shading/</span></a></p><p><a href="https://mathstodon.xyz/tags/mtbos" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mtbos</span></a> <a href="https://mathstodon.xyz/tags/iteachmath" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>iteachmath</span></a> <a href="https://mathstodon.xyz/tags/circles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>circles</span></a> <a href="https://mathstodon.xyz/tags/graphtheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphtheory</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a></p>
Ross Kang<p>A post of <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@11011110" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>11011110</span></a></span> has reminded me that (after a year and a half lurking here) it's never too late for me to toot and pin an intro here.</p><p>I am a Canadian mathematician in the Netherlands, and I have been based at the University of Amsterdam since 2022. I also have some rich and longstanding ties to the UK, France, and Japan.</p><p>My interests are somewhere in the nexus of Combinatorics, Probability, and Algorithms. Specifically, I like graph colouring, random graphs, and probabilistic/extremal combinatorics. I have an appreciation for randomised algorithms, graph structure theory, and discrete geometry.</p><p>Around 2020, I began taking a more active role in the community, especially in efforts towards improved fairness and openness in science. I am proud to be part of a team that founded the journal, Innovations in Graph Theory (<a href="https://igt.centre-mersenne.org/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">igt.centre-mersenne.org/</span><span class="invisible"></span></a>), that launched in 2023. (That is probably the main reason I joined mathstodon!) I have also been a coordinator since 2020 of the informal research network, A Sparse (Graphs) Coalition (<a href="https://sparse-graphs.mimuw.edu.pl/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">sparse-graphs.mimuw.edu.pl/</span><span class="invisible"></span></a>), devoted to online collaborative workshops. In 2024, I helped spearhead the MathOA Diamond Open Access Stimulus Fund (<a href="https://www.mathoa.org/diamond-open-access-stimulus-fund/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">mathoa.org/diamond-open-access</span><span class="invisible">-stimulus-fund/</span></a>).</p><p>Until now, my posts have mostly been about scientific publishing and combinatorics.</p><p><a href="https://mathstodon.xyz/tags/introduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>introduction</span></a> <br><a href="https://mathstodon.xyz/tags/openscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>openscience</span></a> <br><a href="https://mathstodon.xyz/tags/diamondopenaccess" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>diamondopenaccess</span></a> <br><a href="https://mathstodon.xyz/tags/scientificpublishing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scientificpublishing</span></a> <br><a href="https://mathstodon.xyz/tags/openaccess" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>openaccess</span></a> <br><a href="https://mathstodon.xyz/tags/RemoteConferences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RemoteConferences</span></a> <br><a href="https://mathstodon.xyz/tags/combinatorics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>combinatorics</span></a> <br><a href="https://mathstodon.xyz/tags/graphtheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphtheory</span></a> <br><a href="https://mathstodon.xyz/tags/ExtremalCombinatorics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ExtremalCombinatorics</span></a> <br><a href="https://mathstodon.xyz/tags/probability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>probability</span></a></p>
昜曰<p>兴趣标签🏷️{<a href="https://mastodon.social/tags/%E5%8E%BB%E4%B8%AD%E5%BF%83%E5%8C%96" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>去中心化</span></a> <a href="https://mastodon.social/tags/decentralisation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decentralisation</span></a> <a href="https://mastodon.social/tags/%E4%B8%87%E8%B1%A1%E9%82%A6" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>万象邦</span></a> <a href="https://mastodon.social/tags/mastodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mastodon</span></a> <a href="https://mastodon.social/tags/%E4%B9%B3%E9%BD%BF%E8%B1%A1" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>乳齿象</span></a> <a href="https://mastodon.social/tags/%E9%82%A6%E8%81%94%E5%AE%87%E5%AE%99" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>邦联宇宙</span></a> <a href="https://mastodon.social/tags/fediverse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fediverse</span></a> <a href="https://mastodon.social/tags/%E8%A1%8C%E4%B8%BA%E5%85%B1%E9%80%9A" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>行为共通</span></a> <a href="https://mastodon.social/tags/ActivityPub" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ActivityPub</span></a> <a href="https://mastodon.social/tags/%E6%97%85%E6%B8%B8" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>旅游</span></a> <a href="https://mastodon.social/tags/tour" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tour</span></a> <a href="https://mastodon.social/tags/%E8%87%AA%E7%84%B6" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>自然</span></a> <a href="https://mastodon.social/tags/nature" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nature</span></a> <a href="https://mastodon.social/tags/%E7%A7%91%E6%8A%80" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>科技</span></a> <a href="https://mastodon.social/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a> <a href="https://mastodon.social/tags/technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>technology</span></a> <a href="https://mastodon.social/tags/%E6%98%93%E7%BB%8F" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>易经</span></a> <a href="https://mastodon.social/tags/IChing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>IChing</span></a> <a href="https://mastodon.social/tags/%E7%88%BB%E5%8D%A6" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>爻卦</span></a> <a href="https://mastodon.social/tags/Yao" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Yao</span></a> <a href="https://mastodon.social/tags/Gua" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Gua</span></a> <a href="https://mastodon.social/tags/%E8%80%83%E5%8F%A4" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>考古</span></a> <a href="https://mastodon.social/tags/archaeo" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>archaeo</span></a> <a href="https://mastodon.social/tags/%E7%91%9C%E4%BC%BD" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>瑜伽</span></a> <a href="https://mastodon.social/tags/yoga" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>yoga</span></a> <a href="https://mastodon.social/tags/%E7%BC%96%E7%A8%8B" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>编程</span></a> <a href="https://mastodon.social/tags/%E8%AF%AD%E8%A8%80" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>语言</span></a> <a href="https://mastodon.social/tags/Programming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Programming</span></a> <a href="https://mastodon.social/tags/language" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>language</span></a> <a href="https://mastodon.social/tags/%E6%91%84%E5%BD%B1" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>摄影</span></a> <a href="https://mastodon.social/tags/Photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Photography</span></a> <a href="https://mastodon.social/tags/%E6%95%B0%E5%AD%A6" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>数学</span></a> <a href="https://mastodon.social/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mastodon.social/tags/%E5%95%9A%E8%AE%BA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>啚论</span></a> <a href="https://mastodon.social/tags/%E5%9B%BE%E8%AE%BA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>图论</span></a> <a href="https://mastodon.social/tags/graphtheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphtheory</span></a> <a href="https://mastodon.social/tags/%E5%93%B2%E5%AD%A6" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>哲学</span></a> <a href="https://mastodon.social/tags/Philosophy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Philosophy</span></a> <a href="https://mastodon.social/tags/%E9%80%BB%E8%BE%91" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>逻辑</span></a> <a href="https://mastodon.social/tags/logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>logic</span></a> <a href="https://mastodon.social/tags/%E4%BB%A3%E6%95%B0" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>代数</span></a> <a href="https://mastodon.social/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a> <a href="https://mastodon.social/tags/%E7%BB%84%E5%90%88%E5%AD%A6" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>组合学</span></a> <a href="https://mastodon.social/tags/combinatorics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>combinatorics</span></a> <a href="https://mastodon.social/tags/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>人工智能</span></a> <a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mastodon.social/tags/%E8%87%AA%E5%8A%A8%E5%8C%96" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>自动化</span></a> <a href="https://mastodon.social/tags/Automate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Automate</span></a> <a href="https://mastodon.social/tags/%E6%9C%BA%E5%99%A8%E4%BA%BA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>机器人</span></a> <a href="https://mastodon.social/tags/Robot" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Robot</span></a> <a href="https://mastodon.social/tags/%E9%97%B2%E8%B0%88%E8%83%A1%E4%BE%83" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>闲谈胡侃</span></a> <a href="https://mastodon.social/tags/chat" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chat</span></a> <a href="https://mastodon.social/tags/nonsense" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nonsense</span></a>}</p>