Oscar Cunningham<p>I made a Mandelbrot & Julia set explorer! <a href="https://codepen.io/Oscar_Cunningham/full/ZYGZZVW" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">codepen.io/Oscar_Cunningham/fu</span><span class="invisible">ll/ZYGZZVW</span></a></p><p>I was watching <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@standupmaths" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>standupmaths</span></a></span>'s video <a href="https://www.youtube.com/watch?v=0OP9guFmWfs" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=0OP9guFmWf</span><span class="invisible">s</span></a> about Mandelbrot and Julia sets, and I could see he was clicking around in <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@christianp" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>christianp</span></a></span>'s app looking at the Julia set corresponding to each point in the Mandelbrot set. But I wanted to also be able to click around in the Julia set and see how the Mandelbrot set changed.</p><p>Really both the Mandelbrot and Julia sets are two dimensional cross sections of a four dimensional fractal. A point (x,y,a,b) is in this set if the function z ↦ z²+(x+yi) doesn't diverge when iterated starting at a+bi. My app lets you see the slices of (x,y) for fixed a and b, and also (a,b) for fixed x and y.</p><p>I don't write JavaScript, so all code is bad and/or stolen.</p><p><a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/Maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Maths</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a> <a href="https://mathstodon.xyz/tags/Mandelbrot" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mandelbrot</span></a> <a href="https://mathstodon.xyz/tags/MandelbrotSet" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MandelbrotSet</span></a> <a href="https://mathstodon.xyz/tags/Fractal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Fractal</span></a></p>