eupolicy.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
This Mastodon server is a friendly and respectful discussion space for people working in areas related to EU policy. When you request to create an account, please tell us something about you.

Server stats:

223
active users

#flowVisualization

0 posts0 participants0 posts today
Nicole Sharp<p><strong>Creating Liquid Landscapes</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro4.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro5.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro6.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Artist <a href="https://www.terracollage.com/" rel="nofollow noopener noreferrer" target="_blank">Roman De Giuli</a> excels at creating what appear to be vast landscapes carved by moving water. In reality, these pieces are small-scale flows, created on paper. Now, De Giuli takes us behind the scenes to see how he creates these masterpieces — layering, washing, burning, and repeating to build up the paperscape that eventually hosts the flows we see recorded. The work is meticulous and slow, and the results are incredible. De Giuli’s videos never fail to transport me to a calmer, more pristine version of our world. I can’t wait to see the new series! (Video and image credit: <a href="https://www.terracollage.com/" rel="nofollow noopener noreferrer" target="_blank">R. De Giuli</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Quietening Drones</strong></p><p>A drone’s noisiness is one of its major downfalls. Standard drones are obnoxiously loud and disruptive for both humans and animals, one reason that they’re not allowed in many places. This flow visualization, <a href="https://www.youtube.com/watch?v=5yaAFLpLmVg" rel="nofollow noopener noreferrer" target="_blank">courtesy of the Slow Mo Guys</a>, helps show why. The image above shows a standard off-the-shelf drone rotor. As each blade passes through the smoke, it sheds a wingtip vortex. (Note that these vortices are constantly coming off the blade, but we only see them where they intersect with the smoke.) As the blades go by, a constant stream of regularly-spaced vortices marches downstream of the rotor. This regular spacing creates the dominant acoustic frequency that we hear from the drone.</p> Animation of wingtip vortices coming off a drone rotor with blades of different lengths. This causes interactions between the vortices, which helps disrupt the drone’s noise. <p>To counter that, the company Wing uses a rotor with blades of different lengths (bottom image). This staggers the location of the shed vortices and causes some later vortices to spin up with their downstream neighbor. These interactions break up that regular spacing that generates the drone’s dominant acoustic frequency. Overall, that makes the drone sound quieter, likely without a large impact to the amount of lift it creates. (Image credit: <a href="https://www.youtube.com/watch?v=5yaAFLpLmVg" rel="nofollow noopener noreferrer" target="_blank">The Slow Mo Guys</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/acoustics/" target="_blank">#acoustics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/propeller/" target="_blank">#propeller</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/propeller-vortex/" target="_blank">#propellerVortex</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/wingtip-vortices/" target="_blank">#wingtipVortices</a></p>
Nicole Sharp<p><strong>Ultra-Soft Solids Flow By Turning Inside Out</strong></p><p>Can a solid flow? What would that even look like? <a href="https://doi.org/10.1103/PhysRevLett.134.058205" rel="nofollow noopener noreferrer" target="_blank">Researchers explored</a> these questions with an ultra-soft gel (think 100,000 times softer than a gummy bear) pumped through a ring-shaped annular pipe. Despite its elasticity — that tendency to return to an original shape that distinguishes solids from fluids — the gel does flow. But after a short distance, furrows form and grow along the gel’s leading edge. </p> Front view of an ultra-soft solid flowing through an annular pipe. The furrows forming along the face of the gel are places where the gel is essentially turning itself inside out. <p>Since the gel alongside the pipe’s walls can’t slide due to friction, the gel flows by essentially turning itself inside out. Inner portions of the gel flow forward and then split off toward one of the walls as they reach the leading edge. This eversion builds up lots of internal stress in the gel, and furrowing — much like crumpling a sheet of paper — relieves that stress. (Image and research credit: <a href="https://doi.org/10.1103/PhysRevLett.134.058205?_gl=1*1k162cp*_ga*Nzc0NDI4ODAxLjE2NzI4NTgxOTE.*_ga_ZS5V2B2DR1*MTc0MDQxODAyMS4zLjAuMTc0MDQxODAyMS4wLjAuMzMyOTQxMDU0" rel="nofollow noopener noreferrer" target="_blank">J. Hwang et al.</a>; via <a href="https://physics.aps.org/articles/v18/30?utm_campaign=weekly&amp;utm_medium=email&amp;utm_source=emailalert&amp;__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">APS News</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/pipe-flow/" target="_blank">#pipeFlow</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/soft-matter/" target="_blank">#softMatter</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solid-mechanics/" target="_blank">#solidMechanics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/stress/" target="_blank">#stress</a></p>
Nicole Sharp<p><strong>Visualizing Unstable Flames</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/thermo_instab1.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/thermo_instab2.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/thermo_instab3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Inside a combustion chamber, temperature fluctuations can cause sound waves that also disrupt the flow, in turn. This is called a thermoacoustic instability. In this video, researchers explore this process by watching how flames move down a tube. The flame fronts begin in an even curve that flattens out and then develops waves like those on a vibrating pool. Those waves grow bigger and bigger until the flame goes completely turbulent. Visually, it’s mesmerizing. Mathematically, it’s a lovely example of <a href="https://en.wikipedia.org/wiki/Parametric_oscillator" rel="nofollow noopener noreferrer" target="_blank">parametric resonance</a>, where the flame’s instability is fed by system’s natural harmonics. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2561866" rel="nofollow noopener noreferrer" target="_blank">J. Delfin et al.</a>; research credit: J. Delfin et al. <a href="https://doi.org/10.1016/j.fuel.2024.132344" rel="nofollow noopener noreferrer" target="_blank">1</a>, <a href="https://doi.org/10.1016/j.proci.2024.105322" rel="nofollow noopener noreferrer" target="_blank">2</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/combustion/" target="_blank">#combustion</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/combustion-instability/" target="_blank">#combustionInstability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flame/" target="_blank">#flame</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/parametric-resonance/" target="_blank">#parametricResonance</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/resonance/" target="_blank">#resonance</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/thermoacoustic-instability/" target="_blank">#thermoacousticInstability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Nicole Sharp<p><strong>“My Own Galaxy”</strong></p><p>Fungal spores sketch out minute air currents in this shortlisted photograph by Avilash Ghosh. The moth atop a mushroom appears to admire the celestial view. In the largely still air near the forest floor, mushrooms use evaporation and buoyancy to generate air flows capable of lifting their spores high enough to catch a stray breeze. (Image credit: <a href="https://www.cupoty.com/insects-shortlist-6" rel="nofollow noopener noreferrer" target="_blank">A. Ghosh/CUPOTY</a>; via <a href="https://www.thisiscolossal.com/2024/10/cupoty-6-shortlist/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/buoyancy/" target="_blank">#buoyancy</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/evaporation/" target="_blank">#evaporation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/moths/" target="_blank">#moths</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mushrooms/" target="_blank">#mushrooms</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>The Best of FYFD 2024</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/tsdam3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/ant_fast_pull.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/supernova-1.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sprinkler_forward.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/e196_1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/clark-1.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/e211_2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/A23_main.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/emf3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/willen-4-scaled-1.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/Comet12pTails_ShengyuLi_3000-scaled.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/PillarsMongolia_Liao_960_annotated.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/LMP1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/misfara1.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/SunTriangle_Vanoni_960.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Welcome to another year and another look back at FYFD’s most popular posts. (You can find previous editions, too, for 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015, and 2014. Whew, that’s a lot!) Here are some of 2024’s most popular topics:</p><ul><li>The Taum Sauk Dam Failure and Its Legacy</li><li>Stretching Ant Rafts</li><li>Gigapixel Supernova</li><li>Feynman’s Sprinkler Solved</li><li>Calming the Waves</li><li>“Dew Point” Deposits Droplets</li><li>Drying Unaffected by Humidity</li><li>Trapped in a Taylor Column</li><li>Exciting a Flame in a Trough</li><li>Remembering Rivers Past</li><li>A Comet’s Tail</li><li>Light Pillars</li><li>Liquid Metal Printing</li><li>The Miscible Faraday Instability</li><li>A Triangular Prominence</li></ul><p>This year’s topics are a good mix: fundamental research, civil engineering applications, geophysics, astrophysics, art, and one good old-fashioned brain teaser. Interested in what 2025 will hold? There are lots of ways to follow along so that you don’t miss a post.</p><p>And if you enjoy FYFD, please remember that it’s a reader-supported website. I don’t run ads, and it’s been years since my last sponsored post. You can help support the site by&nbsp;<a href="https://www.patreon.com/fyfd" rel="nofollow noopener noreferrer" target="_blank">becoming a patron</a>,&nbsp;<a href="https://www.redbubble.com/people/fyfluiddynamics/shop" rel="nofollow noopener noreferrer" target="_blank">buying some merch</a>, or simply by sharing on social media. And if you find yourself struggling to remember to check the website, remember you can get FYFD in your inbox every two weeks with <a href="https://fyfluiddynamics.com/newsletter/" rel="nofollow noopener noreferrer" target="_blank">our newsletter</a>. Happy New Year!</p><p>(Image credits: dam – Practical Engineering, ants – C. Chen et al., supernova – NOIRLab, sprinkler – K. Wang et al., wave tank – L-P. Euvé et al., “Dew Point” – L. Clark, paint – M. Huisman et al., iceberg – D. Fox, flame trough – S. Mould, sign – B. Willen, comet – S. Li, light pillars – N. Liao, chair – MIT News, Faraday instability – G. Louis et al., prominence – A. Vanoni)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/admin/" target="_blank">#admin</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ants/" target="_blank">#ants</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astrophysics/" target="_blank">#astrophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/civil-engineering/" target="_blank">#civilEngineering</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/comet/" target="_blank">#comet</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/dam-failure/" target="_blank">#damFailure</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/drying/" target="_blank">#drying</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fyfd/" target="_blank">#FYFD</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plasma/" target="_blank">#plasma</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rivers/" target="_blank">#rivers</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rotating-flow/" target="_blank">#rotatingFlow</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/self-excited-oscillation/" target="_blank">#selfExcitedOscillation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/taylor-column/" target="_blank">#TaylorColumn</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/wave-interference/" target="_blank">#waveInterference</a></p>
Nicole Sharp<p><strong>A Mini Jupiter</strong></p><p>Astronaut Don Pettit <a href="https://x.com/astro_Pettit/status/1847989625807065337" rel="nofollow noopener noreferrer" target="_blank">posted</a> this image of a Jupiter-like water globe he created on the International Space Station. In microgravity, surface tension reigns as the water’s supreme force, pulling the mixture of water and food coloring into a perfect sphere. It will be interesting to see a video version of this experiment, so that we can tell what tools Pettit used to swirl the droplet into the eddies we see. Is the full droplet rotating (as a planet would), or are we just seeing the remains of a wire passed through the drop? We’ll have to stay tuned to Pettit’s experiments to find out. (Image credit: <a href="https://x.com/astro_Pettit/status/1847989625807065337" rel="nofollow noopener noreferrer" target="_blank">NASA/D. Pettit</a>; via <a href="https://www.space.com/nasa-astronaut-don-pettit-jupiter-water-ball-iss" rel="nofollow noopener noreferrer" target="_blank">space.com</a>; submitted by J. Shoer)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/microgravity/" target="_blank">#microgravity</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p>In what seems to be a tradition now, a group at MIT imagined how the Millennium Falcon would perform if it lost its engines during atmospheric flight. Their hypothetical scenario took place in the Battle of Endor, with the Falcon flying at an altitude of 2 kilometers.* Could Han Solo and Chewbecca safely glide the craft down? </p><p>Using computational fluid dynamics, the group found the Millennium Falcon has a glide ratio of only 1.8, meaning it travels forward 1.8 kilometers in the time it takes to lose one kilometer of altitude. Its namesake bird, on the other hand, has a <a href="https://doi.org/10.1242/jeb.52.2.345" rel="nofollow noopener noreferrer" target="_blank">glide ratio of 10</a>. The Corellian freighter might not be the best glider out there, but the team estimated that it could safely manage its 3.6 kilometer glide down. (Image credit: <a href="https://doi.org/10.1103/APS.DFD.2023.GFM.P0049" rel="nofollow noopener noreferrer" target="_blank">S. Costa et al.</a>; see also X-Wing Re-entry and AT-AT Flow)</p><p>*I’m definitely overthinking this, but now I’m really wondering what atmospheric characteristics they used for Endor. And what’s Endor’s gravity like?</p><p><a href="https://fyfluiddynamics.com/2024/05/millennium-falcons-glide/" class="" rel="nofollow noopener noreferrer" target="_blank">https://fyfluiddynamics.com/2024/05/millennium-falcons-glide/</a></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2023gofm/" target="_blank">#2023gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/gliding/" target="_blank">#gliding</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/star-wars/" target="_blank">#starWars</a></p>