eupolicy.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
This Mastodon server is a friendly and respectful discussion space for people working in areas related to EU policy. When you request to create an account, please tell us something about you.

Server stats:

242
active users

#datasciencecourse

0 posts0 participants0 posts today
Statistics Globe<p>I used to think that writing sophisticated R code meant using all the advanced features and chaining long functions together...</p><p>Fancy code can be fun, but clean code makes collaboration and debugging so much easier.</p><p>Stay informed on data science by joining my free newsletter. Check out this link for more details: <a href="http://eepurl.com/gH6myT" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://</span><span class="">eepurl.com/gH6myT</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/datasciencecourse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datasciencecourse</span></a> <a href="https://mastodon.social/tags/datasciencetraining" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datasciencetraining</span></a></p>
Statistics Globe<p>Combining Principal Component Analysis (PCA) with k-means Clustering in R can significantly enhance your data analysis by reducing dimensionality and improving clustering performance.</p><p>Check out my article created with Cansu Kebabci: <a href="https://statisticsglobe.com/pca-before-k-means-clustering-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/pca-before</span><span class="invisible">-k-means-clustering-r</span></a></p><p>I've also created a video: <a href="https://www.youtube.com/watch?v=nzhSjOKSGC8" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">youtube.com/watch?v=nzhSjOKSGC8</span><span class="invisible"></span></a></p><p>Furthermore, I offer an extensive online course on PCA: <a href="https://statisticsglobe.com/online-course-pca-theory-application-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-pca-theory-application-r</span></a></p><p><a href="https://mastodon.social/tags/datasciencetraining" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datasciencetraining</span></a> <a href="https://mastodon.social/tags/bigdata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bigdata</span></a> <a href="https://mastodon.social/tags/advancedanalytics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>advancedanalytics</span></a> <a href="https://mastodon.social/tags/datasciencecourse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datasciencecourse</span></a></p>
Statistics Globe<p>Decision trees are a powerful tool in data science for making decisions and predictions based on data. They work by splitting data into branches based on specific criteria, allowing for clear and interpretable decisions. When used correctly, decision trees can significantly enhance the accuracy and interpretability of models.</p><p>Learn more: <a href="https://statisticsglobe.com/online-course-statistical-methods-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-statistical-methods-r</span></a></p><p><a href="https://mastodon.social/tags/datasciencecourse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datasciencecourse</span></a> <a href="https://mastodon.social/tags/dataanalytics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataanalytics</span></a> <a href="https://mastodon.social/tags/statisticsclass" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statisticsclass</span></a></p>
Statistics Globe<p>The Standard Error measures how much a sample statistic, like the mean, is expected to vary from the true population parameter. It helps us understand the precision of our estimates and how much confidence we can place in our results.</p><p>Learn more: <a href="https://statisticsglobe.com/online-course-statistical-methods-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-statistical-methods-r</span></a></p><p><a href="https://mastodon.social/tags/datasciencecourse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datasciencecourse</span></a> <a href="https://mastodon.social/tags/dataanalytics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataanalytics</span></a> <a href="https://mastodon.social/tags/statisticsclass" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statisticsclass</span></a></p>
Statistics Globe<p>Simplify and elevate your data visualization with GGally, an R package designed to extend ggplot2 by providing specialized tools for visualizing complex data relationships. Whether you're exploring data, comparing models, or analyzing correlations, GGally has you covered.</p><p>Visualization: <a href="https://ggobi.github.io/ggally/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">ggobi.github.io/ggally/</span><span class="invisible"></span></a></p><p>More details: <a href="https://statisticsglobe.com/online-course-data-visualization-ggplot2-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-data-visualization-ggplot2-r</span></a></p><p><a href="https://mastodon.social/tags/tidyverse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tidyverse</span></a> <a href="https://mastodon.social/tags/datavisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datavisualization</span></a> <a href="https://mastodon.social/tags/datasciencecourse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datasciencecourse</span></a> <a href="https://mastodon.social/tags/data" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>data</span></a> <a href="https://mastodon.social/tags/package" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>package</span></a> <a href="https://mastodon.social/tags/rprogramminglanguage" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rprogramminglanguage</span></a> <a href="https://mastodon.social/tags/dataviz" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataviz</span></a> <a href="https://mastodon.social/tags/ggplot2" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ggplot2</span></a></p>
Statistics Globe<p>Both R and Python are powerful tools widely used for data analysis and research, making them worth a detailed comparison.</p><p>Data credit: <a href="https://www.kaggle.com/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">kaggle.com/</span><span class="invisible"></span></a></p><p>Learn more: <a href="https://statisticsglobe.com/online-course-r-introduction" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-r-introduction</span></a></p><p><a href="https://mastodon.social/tags/bigdata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bigdata</span></a> <a href="https://mastodon.social/tags/rstudio" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstudio</span></a> <a href="https://mastodon.social/tags/datascientists" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datascientists</span></a> <a href="https://mastodon.social/tags/datasciencecourse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datasciencecourse</span></a> <a href="https://mastodon.social/tags/package" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>package</span></a></p>
Statistics Globe<p>In Bayesian inference, a credible interval is a range of values within which a parameter lies with a certain probability, given the observed data and prior beliefs. The image of this post (based on this Wikipedia image: <a href="https://en.wikipedia.org/wiki/Credible_interval#/media/File:Highest_posterior_density_interval.svg" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Credible</span><span class="invisible">_interval#/media/File:Highest_posterior_density_interval.svg</span></a>) represents a 90% highest-density credible interval of a posterior probability distribution.</p><p>More details: <a href="http://eepurl.com/gH6myT" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://</span><span class="">eepurl.com/gH6myT</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/statistical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statistical</span></a> <a href="https://mastodon.social/tags/datasciencecourse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datasciencecourse</span></a> <a href="https://mastodon.social/tags/datascience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datascience</span></a> <a href="https://mastodon.social/tags/rprogramming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rprogramming</span></a> <a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a></p>