eupolicy.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
This Mastodon server is a friendly and respectful discussion space for people working in areas related to EU policy. When you request to create an account, please tell us something about you.

Server stats:

213
active users

#cs

4 posts3 participants0 posts today
Jencel Panic<p>I have long suspected that any language with if's and loops would be Turing complete, turns out there was a proof for that all along...</p><p><a href="https://en.wikipedia.org/wiki/Structured_program_theorem" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Structur</span><span class="invisible">ed_program_theorem</span></a></p><p><a href="https://mathstodon.xyz/tags/programming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>programming</span></a> <a href="https://mathstodon.xyz/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a></p>
Paris<p>Olga Carmona de plus en plus proche des Féminines du PSG –</p><p>Afin de concurrencer l’Olympique Lyonnais, les Féminines du PSG souhaitent se renforcer. Elles ser…<br><a href="https://pubeurope.com/tags/Paris" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Paris</span></a> <a href="https://pubeurope.com/tags/FR" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FR</span></a> <a href="https://pubeurope.com/tags/France" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>France</span></a> <a href="https://pubeurope.com/tags/Actu" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Actu</span></a> <a href="https://pubeurope.com/tags/News" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>News</span></a> <a href="https://pubeurope.com/tags/Europe" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Europe</span></a> <a href="https://pubeurope.com/tags/EU" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EU</span></a> <a href="https://pubeurope.com/tags/actu" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>actu</span></a> <a href="https://pubeurope.com/tags/ActuParis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ActuParis</span></a> <a href="https://pubeurope.com/tags/Actualit%C3%A9s" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Actualités</span></a> <a href="https://pubeurope.com/tags/Actualit%C3%A9sParis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ActualitésParis</span></a> <a href="https://pubeurope.com/tags/canalsupporters" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>canalsupporters</span></a> <a href="https://pubeurope.com/tags/Carmona" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Carmona</span></a> <a href="https://pubeurope.com/tags/CS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CS</span></a> <a href="https://pubeurope.com/tags/europe" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>europe</span></a> <a href="https://pubeurope.com/tags/feminines" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>feminines</span></a> <a href="https://pubeurope.com/tags/F%C3%A9mininesduPSG" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FémininesduPSG</span></a> <a href="https://pubeurope.com/tags/f%C3%A9mininespsg" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fémininespsg</span></a> <a href="https://pubeurope.com/tags/mercato" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mercato</span></a> <a href="https://pubeurope.com/tags/mercatopsg" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mercatopsg</span></a> <a href="https://pubeurope.com/tags/NewsParis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NewsParis</span></a> <a href="https://pubeurope.com/tags/OlgaCarmona" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OlgaCarmona</span></a> <a href="https://pubeurope.com/tags/ParisNews" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ParisNews</span></a> <a href="https://pubeurope.com/tags/parissaint" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>parissaint</span></a>-germain <a href="https://pubeurope.com/tags/parissg" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>parissg</span></a> <a href="https://pubeurope.com/tags/psg" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>psg</span></a> <a href="https://pubeurope.com/tags/psgfeminin" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>psgfeminin</span></a> <a href="https://pubeurope.com/tags/realmadrid" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>realmadrid</span></a> <a href="https://pubeurope.com/tags/R%C3%A9publiquefran%C3%A7aise" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Républiquefrançaise</span></a><br><a href="https://www.europesays.com/fr/183302/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/fr/183302/</span><span class="invisible"></span></a></p>
Tariq<p>Why is there no consideration of base cases ?</p><p>This is the textbook's explanation of "structural induction". The subsequent worked examples don't refer to base cases either.</p><p>Is it because they are always trivially true? I doubt this, myself.</p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a></p>
Tariq<p>currently learning about "structural induction"</p><p>my understanding (not 100% sure) </p><p>* We want to prove a property P for a λ-term E.</p><p>* E is constructed using a set of construction rules.</p><p>* So it must have been constructed from a term D by applying a construction rule.</p><p>* Induction hypothesis (IH) is that P is true for D.</p><p>* If we can prove that P applies to E by virtue of the IH and a property of the construction rules..</p><p>.. we've proven P is true generally.</p><p>Is that right?</p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a></p>
Tariq<p>I've been writing up my attempts at the exercises from "Type Theory &amp; Formal Proof".</p><p>I've done chapter 1, and have almost done chapter 2.</p><p>I'm sure I've made many errors, but overall it helps me learn the ideas better than just reading, or doing the exercises as if no-one would read the solutions.</p><p><a href="https://type-theory-and-formal-proof.blogspot.com/p/contents.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">type-theory-and-formal-proof.b</span><span class="invisible">logspot.com/p/contents.html</span></a></p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a></p>
Tariq<p>Is dimensional analysis the type theory of physics?</p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a> <a href="https://mastodon.social/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a></p>
Tariq<p>Is this correct?</p><p>Q. Construct a (simply typed) λ-term of type</p><p>((α →β) →α) →(α →α →β) →α</p><p>A. My answer</p><p>λx:((α →β) →α) . λy: (α →α →β) . x(y(z:α)) </p><p>My reasoning:</p><p>* the term takes 2 arguments and we don't have a choice of their type</p><p>* but I can't reach the output type with just those two arguments so I need a 3rd variable which I include as a "pre-typed variable" .. z:α</p><p>I just feel uncertain about crowbarring a pre-typed z into the expression</p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a></p>
Tariq<p>Need some advice.</p><p>The textbook only has example of proofs with the "flags" all at the top of flag notation proofs.</p><p>But I think for this proof, the flag for `z` needs to be further down.</p><p>My reasoning .... because if `x` and `y` are instantiated inside the `z` scope, they can't be used outside it.</p><p>Am I right? Does scope not really matter in flag notation proofs ?</p><p>Attached image shows both versions for comparison.</p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a></p>
Tariq<p>To create proof trees like this in LaTex</p><p>I first tried the popular bussproof but then moved to ebproof as it was slightly nicer for labelling inference steps.</p><p>I actually tried another one too. Overall they all seemed pretty simple to use which is good - I don't often say that about software!</p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a> <a href="https://mastodon.social/tags/latex" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>latex</span></a> <a href="https://mastodon.social/tags/logic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>logic</span></a></p>
Charlie McHenry<p>One of the great heroes in not just Apple history, but computer history, Bill Atkinson, has died at 74 from pancreatic cancer. <a href="https://connectop.us/tags/obit" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>obit</span></a> <a href="https://connectop.us/tags/RIP" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RIP</span></a> <a href="https://connectop.us/tags/ComputerScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ComputerScience</span></a> <a href="https://connectop.us/tags/CS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CS</span></a> <a href="https://connectop.us/tags/IT" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>IT</span></a> <a href="https://connectop.us/tags/Technology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Technology</span></a> <a href="https://connectop.us/tags/ComputerHistory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ComputerHistory</span></a> <a href="https://connectop.us/tags/Apple" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Apple</span></a> </p><p><a href="https://daringfireball.net/linked/2025/06/07/bill-atkinson-rip" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">daringfireball.net/linked/2025</span><span class="invisible">/06/07/bill-atkinson-rip</span></a></p>
Tariq<p>Need some help.</p><p>-----</p><p>I know that to prove P ⇒ Q, I assume P and derive Q.</p><p>----</p><p>Now to prove</p><p>(A⇒B) ⇒ ((B⇒C) ⇒ (A⇒C))</p><p>I need to assume (A⇒B) and derive ((B⇒C) ⇒ (A⇒C)).</p><p>But I can't seem to make progress from (A⇒B) alone, I think I need to assume A is true as well.</p><p>----</p><p>Intuitively the statement makes total sense. But drawing the derivation as per image attached using elim and intro rules, I get stuck unless I assume A too.</p><p>Can anyone help clarify my thinking?</p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a> <a href="https://mastodon.social/tags/logic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>logic</span></a></p>
Tariq<p>My second ever derivation in "flag format"</p><p>I'm using the flagderiv latex package which is actually very simple to use. It is already installed in Overleaf if you use that.</p><p><a href="https://www.ctan.org/pkg/flagderiv" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">ctan.org/pkg/flagderiv</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a> <a href="https://mastodon.social/tags/latex" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>latex</span></a></p>
Tariq<p>my first ever derivation in "flag format" !!</p><p><a href="https://type-theory-and-formal-proof.blogspot.com/2025/06/chapter-2-exercise-6.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">type-theory-and-formal-proof.b</span><span class="invisible">logspot.com/2025/06/chapter-2-exercise-6.html</span></a></p><p>update - there's a typo on the last line, I'll fix it tomorrow</p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a></p>
Tariq<p>LaTex for Logicians</p><p>It seems to be a collection of how-tos for recreating diagrams / notation used in logic.</p><p>I may use it for "flag derivation diagrams".</p><p><a href="https://www.logicmatters.net/latex-for-logicians/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">logicmatters.net/latex-for-log</span><span class="invisible">icians/</span></a></p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a> <a href="https://mastodon.social/tags/logic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>logic</span></a> <a href="https://mastodon.social/tags/texlatex" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>texlatex</span></a></p>
Tariq<p>I've posted an exercise I'm not making progress on stack exchange</p><p>(I think) the core of it is how to handle "free variables" when deriving a type using the 3 rules - (var) (appl) (abst)</p><p><a href="https://cs.stackexchange.com/questions/173051/using-premise-conclusion-derivation-rules-with-free-variables-in-simply-typed-λ" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">cs.stackexchange.com/questions</span><span class="invisible">/173051/using-premise-conclusion-derivation-rules-with-free-variables-in-simply-typed-λ</span></a></p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a></p>
Tariq<p>I'd welcome advice on how to handle "free variables" when working out if a λ-term is legal using the "premise / conclusion" process </p><p>I'm not sure how to handle the type for the "free variable" y in this exercise</p><p>working out so far<br><a href="https://type-theory-and-formal-proof.blogspot.com/2025/06/chapter-2-exercise-6.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">type-theory-and-formal-proof.b</span><span class="invisible">logspot.com/2025/06/chapter-2-exercise-6.html</span></a></p><p>image attached to illustrate which variable </p><p>I should have ended up with the empty context justifies...</p><p>∅ ⊢ ....</p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a></p>
Tariq<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@abuseofnotation" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>abuseofnotation</span></a></span> </p><p>So I typed </p><p>λxy . x (λz.y) y</p><p>as</p><p>((C→B) →B →E) →B→C→E</p><p>but the book says</p><p>((C→B) →B →E) →B→E</p><p>I can't pin down the reason one is correct over the other - I can see reasons for both.</p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a></p>
Tariq<p>Do λ-terms of the following form </p><p>λxy . x (λz.y) y</p><p>have a type with 4 parts </p><p>A → B → C → D</p><p>or 3 parts</p><p>A → B → D</p><p>----</p><p>I would have thought 4 parts because there are 3 inputs (x, y, z) and one output</p><p>But a book I'm reading suggests 2 inputs (x, y) and one output</p><p>---</p><p>EDIT - my working out</p><p><a href="https://type-theory-and-formal-proof.blogspot.com/2025/06/chapter-2-exercise-5.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">type-theory-and-formal-proof.b</span><span class="invisible">logspot.com/2025/06/chapter-2-exercise-5.html</span></a></p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a></p>
Tariq<p>here's my solution to the exercise .. assuming my interpretation of "pre-typed" λ-terms is correct</p><p><a href="https://type-theory-and-formal-proof.blogspot.com/2025/06/chapter-2-exercise-4.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">type-theory-and-formal-proof.b</span><span class="invisible">logspot.com/2025/06/chapter-2-exercise-4.html</span></a></p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a></p>
Tariq<p>What is a "pre-typed" λ-term?</p><p>The textbook is unclear.</p><p>Internet searching doesn't show much which suggests "pre-typed" might be specific to this textbook.</p><p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/cs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cs</span></a></p>