eupolicy.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
This Mastodon server is a friendly and respectful discussion space for people working in areas related to EU policy. When you request to create an account, please tell us something about you.

Server stats:

223
active users

#mathart

5 posts5 participants0 posts today
foldworks<p>Carved stone screen, Agra, India, 19th century, copied from earlier models, Victoria and Albert Museum, London</p><p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/architecture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>architecture</span></a></p>
n-gons<p>A 17x17 rhombus grid for <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a></p><p><a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/grid" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>grid</span></a> <a href="https://mathstodon.xyz/tags/squares" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>squares</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a></p>
Andrew D. Hwang<p>The pieces pictured are all still available. Longer-term I anticipate carrying only selected designs in silver.</p><p><a href="https://www.diffgeom.com/product-category/jewelry/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">diffgeom.com/product-category/</span><span class="invisible">jewelry/</span></a></p><p><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/Jewelry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Jewelry</span></a> <a href="https://mathstodon.xyz/tags/3dPrinting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3dPrinting</span></a></p>
Andrew D. Hwang<p>Completing the quartet of brass display models, "Threefold" realizes part of the Bryant-Kusner parametrization of the real projective plane.</p><p>This 90mm unpolished brass piece was made by Shapeways in winter 2024 using lost-wax casting.<br><a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/3DPrinting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3DPrinting</span></a></p>
Andrew D. Hwang<p>"Butterfly" is a depiction of the twisted cubic: The set of \((t, t^{2}, t^{3})\) as \(t\) ranges over four annuli in the complex unit disk (with discreet radial struts for support), suitably orthogonally projected to real 3-space.</p><p>The 90mm unpolished brass piece was made by Shapeways in spring 2023 using lost-wax casting.</p><p><a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/3DPrinting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3DPrinting</span></a></p>
foldworks<p>Exterior wall border, Pavilion Theatre, Gorleston-on-Sea, England<br>“built in 1898 and was designed by the Borough Engineer J W Cockrill…and is currently closed to the public.” <a href="https://en.wikipedia.org/wiki/Gorleston_Pavilion" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Gorlesto</span><span class="invisible">n_Pavilion</span></a><br><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/theatre" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theatre</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/architecture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>architecture</span></a> <a href="https://mathstodon.xyz/tags/history" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>history</span></a></p>
n-gons<p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> - <a href="https://mathstodon.xyz/tags/Tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Tiling</span></a> with triangles and squares.</p><p><a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/MathsArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathsArt</span></a></p>
foldworks<p>Star 8 Octad, modular origami made from eight units. Only four folds on each unit and two for assembly.</p><p>Edit: Instructions are here: <a href="http://foldworks.net/wp-content/uploads/2025/07/Starburst8Octad069.pdf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">foldworks.net/wp-content/uploa</span><span class="invisible">ds/2025/07/Starburst8Octad069.pdf</span></a>, from my book ‘Star Origami: The Starrygami Galaxy of Modular Origami Stars, Rings and Wreaths’ (CRC Press, 2021) <a href="https://www.routledge.com/Star-Origami-The-StarrygamiTM-Galaxy-of-Modular-Origami-Stars-Rings-and-Wreaths/Lam/p/book/9781032022338" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">routledge.com/Star-Origami-The</span><span class="invisible">-StarrygamiTM-Galaxy-of-Modular-Origami-Stars-Rings-and-Wreaths/Lam/p/book/9781032022338</span></a></p><p><a href="https://mathstodon.xyz/tags/origami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>origami</span></a> <a href="https://mathstodon.xyz/tags/ModularOrigami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ModularOrigami</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a>#craft <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a> <a href="https://mathstodon.xyz/tags/PaperCraft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PaperCraft</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/ArtistOnMastodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtistOnMastodon</span></a> <a href="https://mathstodon.xyz/tags/ArtistsOnMastodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtistsOnMastodon</span></a> <a href="https://mathstodon.xyz/tags/graphic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphic</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a> <a href="https://mathstodon.xyz/tags/artwork" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>artwork</span></a> <a href="https://mathstodon.xyz/tags/2D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>2D</span></a> <a href="https://mathstodon.xyz/tags/vector" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vector</span></a> <a href="https://mathstodon.xyz/tags/illustration" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>illustration</span></a> <a href="https://mathstodon.xyz/tags/illustrator" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>illustrator</span></a> <a href="https://mathstodon.xyz/tags/art" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>art</span></a> <a href="https://mathstodon.xyz/tags/artist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>artist</span></a> <a href="https://mathstodon.xyz/tags/arts" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arts</span></a> <a href="https://mathstodon.xyz/tags/arte" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arte</span></a> <a href="https://mathstodon.xyz/tags/designer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>designer</span></a> <a href="https://mathstodon.xyz/tags/GraphicDesign" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GraphicDesign</span></a> <a href="https://mathstodon.xyz/tags/MastoArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MastoArt</span></a> <a href="https://mathstodon.xyz/tags/FediArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FediArt</span></a> <a href="https://mathstodon.xyz/tags/CreativeToots" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeToots</span></a> @origami</p>
foldworks<p>Now squares increasing by the golden ratio</p><p><a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/Geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geogebra</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/pattern" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pattern</span></a> <a href="https://mathstodon.xyz/tags/GraphicDesign" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GraphicDesign</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a> <a href="https://mathstodon.xyz/tags/GoldenRatio" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GoldenRatio</span></a></p>
foldworks<p>Looping animation of silver rectangles with sides decreasing by 1/√2.</p><p><a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/Geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geogebra</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/pattern" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pattern</span></a> <a href="https://mathstodon.xyz/tags/GraphicDesign" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GraphicDesign</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a></p>
foldworks<p>Looping animation of squares with sides decreasing by golden ratio.</p><p>h/t <a href="https://youtube.com/shorts/VloYWtLJ2KM" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">youtube.com/shorts/VloYWtLJ2KM</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/Geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geogebra</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/pattern" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pattern</span></a> <a href="https://mathstodon.xyz/tags/GraphicDesign" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GraphicDesign</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a> <a href="https://mathstodon.xyz/tags/GoldenRatio" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GoldenRatio</span></a></p>
Non-Euclidean Dreamer<p><a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/handcoded" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>handcoded</span></a></p>
foldworks<p>Tiles on a temple wall, Bangkok, Thailand<br><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/temple" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>temple</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/architecture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>architecture</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a></p>
n-gons<p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> Flowery tetradecagon dissection into rhombuses and stars.</p><p><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/MathsArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathsArt</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/Tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Tiling</span></a> <a href="https://mathstodon.xyz/tags/Knots" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Knots</span></a></p>
Andrew D. Hwang<p>Over my years in academia, I helped create a variety of free online mathematical materials. Pirouette is a Spirograph clone that runs in a web browser. I hope you and your students enjoy the software! Read more:</p><p><a href="https://www.diffgeom.com/blogs/free-online-math-materials/pirouette/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">diffgeom.com/blogs/free-online</span><span class="invisible">-math-materials/pirouette/</span></a></p><p><a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/ITeachmath" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ITeachmath</span></a></p>
foldworks<p>And a generalisation that needed more to work to do.<br><a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <a href="https://mathstodon.xyz/tags/IslamicPattern" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>IslamicPattern</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/pattern" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pattern</span></a> <a href="https://mathstodon.xyz/tags/GraphicDesign" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GraphicDesign</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a></p>
foldworks<p>A looping animation. I didn’t expect to need to scroll the shapes to loop correctly.<br>h/t <a href="https://mathstodon.xyz/@JeanBaptisteEt4/114739933827848761" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mathstodon.xyz/@JeanBaptisteEt</span><span class="invisible">4/114739933827848761</span></a><br><a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <a href="https://mathstodon.xyz/tags/IslamicPattern" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>IslamicPattern</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/pattern" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pattern</span></a> <a href="https://mathstodon.xyz/tags/GraphicDesign" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GraphicDesign</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a></p>
foldworks<p>Parquet flooring, Catholic Church of St. Edmund, Bungay, England<br>A detailed architectural guide is at <a href="https://waveneyvalleycatholics.church/guide/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">waveneyvalleycatholics.church/</span><span class="invisible">guide/</span></a></p><p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/church" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>church</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/architecture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>architecture</span></a> <a href="https://mathstodon.xyz/tags/history" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>history</span></a></p>
n-gons<p>A star knot for <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> </p><p>A dodecagon ring can be made from squares and triangles. There are three nice way to connect decagon rings to hexagons - each with a small star inside. If you connect the rings into a larger hexagon you start seeing a koch snowflake. This snowflake can also be tiled with squares and triangles, joining select shapes you can make a nice knot.</p><p><a href="https://mathstodon.xyz/tags/knot" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>knot</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractal</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a></p>
Dani Laura (they/she/he)<p>Koch revisited! Another non-regular fractal produced with the idea of the previous post <a href="https://mathstodon.xyz/@DaniLaura/114715501148741420" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mathstodon.xyz/@DaniLaura/1147</span><span class="invisible">15501148741420</span></a> (and no randomness), see first figure. Each triangle generated from a side also depends on the sizes of the current neighbour sides, not just from the side size. Two opposite triangles are generated from each side, the internal one being invisible (but its offspring do not inherit this trait). In the second figure a regular variation where triangles are put off-centre. Here the initial triangle is not drawn as well. <br><a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractal</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicArt</span></a> <a href="https://mathstodon.xyz/tags/AbstractArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AbstractArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a></p>