eupolicy.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
This Mastodon server is a friendly and respectful discussion space for people working in areas related to EU policy. When you request to create an account, please tell us something about you.

Server stats:

199
active users

#javascript

67 posts36 participants7 posts today
InfoQ<p><a href="https://techhub.social/tags/Oxlint" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Oxlint</span></a> 1.0 is here, bringing fast linting, extensive rules, and smooth migration tools for projects of any size - from open-source to enterprise.</p><p>The Rust-based JavaScript &amp; TypeScript linter from the Oxc toolchain hits its first stable release.</p><p>Learn more: <a href="https://bit.ly/4fS5LeS" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">bit.ly/4fS5LeS</span><span class="invisible"></span></a> </p><p><a href="https://techhub.social/tags/InfoQ" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InfoQ</span></a> <a href="https://techhub.social/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://techhub.social/tags/TypeScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TypeScript</span></a> <a href="https://techhub.social/tags/RustLang" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RustLang</span></a></p>
Rémi Eismann<p>A003623: Wythoff AB-numbers: floor(floor(n*phi^2)*phi), where phi = (1+sqrt(5))/2</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/A003623.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/A003623.</span><span class="invisible">html</span></a><br>3D graph Gen, threejs animation ➡️ <a href="https://decompwlj.com/3DgraphGen/A003623.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/A0036</span><span class="invisible">23.html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/A003623.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">A003623.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>Decomposition into weight × level + jump of prime numbers in 3D, threejs - webGL (log(weight), log(level), log(jump))<br>➡️ <a href="https://decompwlj.com/3Dgraph/Prime_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/Prime_nu</span><span class="invisible">mbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>A003601: Numbers j such that the average of the divisors of j is an integer: sigma_0(j) divides sigma_1(j). Alternatively, numbers j such that tau(j) (A000005(j)) divides sigma(j) (A000203(j))</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/A003601.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/A003601.</span><span class="invisible">html</span></a><br>3D graph Gen, threejs animation ➡️ <a href="https://decompwlj.com/3DgraphGen/A003601.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/A0036</span><span class="invisible">01.html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/A003601.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">A003601.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>A003512: A Beatty sequence: floor(n*(sqrt(3) + 2))</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/A003512.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/A003512.</span><span class="invisible">html</span></a><br>3D graph Gen, threejs animation ➡️ <a href="https://decompwlj.com/3DgraphGen/A003512.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/A0035</span><span class="invisible">12.html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/A003512.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">A003512.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/Beatty" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Beatty</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>150 sequences decomposed into weight × level + jump in one GIF (log(weight),log(level)): <br>1000 on <a href="https://decompwlj.com/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">decompwlj.com/</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>A003511: A Beatty sequence: floor( n * (1 + sqrt(3))/2 )</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/A003511.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/A003511.</span><span class="invisible">html</span></a><br>3D graph Gen, threejs animation ➡️ <a href="https://decompwlj.com/3DgraphGen/A003511.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/A0035</span><span class="invisible">11.html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/A003511.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">A003511.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/Beatty" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Beatty</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>A003485: Hurwitz-Radon function at powers of 2</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/A003485.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/A003485.</span><span class="invisible">html</span></a><br>3D graph Gen, threejs animation ➡️ <a href="https://decompwlj.com/3DgraphGen/A003485.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/A0034</span><span class="invisible">85.html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/A003485.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">A003485.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>My first, favorite and most important sequence, the weights of prime numbers: A117078<br>We see prime numbers classified by level and by weight on the graph.</p><p>A117078: a(n) is the smallest k such that prime(n+1) = prime(n) + (prime(n) mod k), or 0 if no such k exists: <a href="https://oeis.org/A117078" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">oeis.org/A117078</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>A003309: Ludic numbers: apply the same sieve as Eratosthenes, but cross off every k-th remaining number</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/Ludic_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/Ludic_nu</span><span class="invisible">mbers.html</span></a><br>3D graph Gen, threejs animation ➡️ <a href="https://decompwlj.com/3DgraphGen/Ludic_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Ludic</span><span class="invisible">_numbers.html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/Ludic_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">Ludic_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>A003277: Cyclic numbers: k such that k and phi(k) are relatively prime; also k such that there is just one group of order k, i.e., A000001(k) = 1</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/Cyclic_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/Cyclic_n</span><span class="invisible">umbers.html</span></a><br>3D graph Gen, threejs animation ➡️ <a href="https://decompwlj.com/3DgraphGen/Cyclic_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Cycli</span><span class="invisible">c_numbers.html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/Cyclic_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">Cyclic_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>My data have not been verified but my work is highly reproducible.<br>- Downloads (csv, img, dump) ➡️ <a href="https://decompwlj.com" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">decompwlj.com</span><span class="invisible"></span></a><br>- Algorithms ➡️ <a href="https://oeis.org/wiki/Decomposition_into_weight_*_level_%2B_jump#Algorithms" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Decomposition_in</span><span class="invisible">to_weight_*_level_%2B_jump#Algorithms</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/Algorithms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Algorithms</span></a> <a href="https://mathstodon.xyz/tags/Downloads" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Downloads</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>