eupolicy.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
This Mastodon server is a friendly and respectful discussion space for people working in areas related to EU policy. When you request to create an account, please tell us something about you.

Server stats:

196
active users

#geometry

15 posts14 participants2 posts today
Rod Stephens<p>Connect two points with arcs of their midpoint circle in Python<br><a href="https://rodstephensbooks.com/find_midpoint_arcs.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">rodstephensbooks.com/find_midp</span><span class="invisible">oint_arcs.html</span></a><br><a href="https://hachyderm.io/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://hachyderm.io/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a></p>
Dani Laura (they/she/he)<p>I've found another partition of the fourth root of 2 rectangle (first picture), which is essentially different from the previous one. It produces interesting tilings (second picture). And when the amount of splitting is made dependent of the position of the tilings, one can get nice artistic results (last two pictures). (The appearance of what appear to be flags of Spain (and other countries) in one is entirely coincidental.)<br><a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicArt</span></a> <a href="https://mathstodon.xyz/tags/AbstractArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AbstractArt</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a></p>
n-gons<p>Swirly star</p><p><a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/Tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/MathsArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathsArt</span></a></p>
n-gons<p>Into the Icosidodecahedron</p><p>Tiling of golden rhombus prisms and pentagonal prisms.</p><p><a href="https://mathstodon.xyz/tags/Hedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hedron</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a></p>
Paul Balduf<p><a href="https://mathstodon.xyz/tags/Perimeter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Perimeter</span></a> Institute has many objects that are both for decoration and <a href="https://mathstodon.xyz/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> education. One of them is an inflatable semi-spherical moon. Overnight, it lost its pressure, but not its educational value: it is now an illustration of spherical <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> , showing that the surface of a sphere can not easily be mapped onto a plane without wrinkles.</p>
Rasmus<p>Monohedral skew quadrangle tiling of a surface embedded around a diamond lattice.</p><p>The tiling is the dual tessellation of a partial Cayley surface complex of the group: </p><p>G = ⟨ f₁, f₂, t₁ ∣ t₁³, f₁², f₂², (f₁f₂f₁t₁)³, (f₂t₁)³, (f₁f₂t₁⁻¹)² ⟩</p><p>(1/n)</p><p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a></p>
Dani Laura (they/she/he)<p>These tilings are based on the decomposition of a right kite (with two right angles) whose sides are in the ratio √2. This decomposition can be done with any right kite, but with that ratio one can make nice drawings in the kites which fit neatly with others in the resulting tessellation.<br><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a></p>
Ian Badcoe<p>An interesting <a href="https://peoplemaking.games/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a> <a href="https://peoplemaking.games/tags/Subdivision" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Subdivision</span></a> scheme in use here...</p>
mustamakkaraA wall in a lecture room at University of Coimbra for <a href="https://pixelfed.social/discover/tags/texturetuesday?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#texturetuesday</a> <br> <br> 1.7.2025 <a href="https://pixelfed.social/discover/tags/Nikon?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#Nikon</a> <a href="https://pixelfed.social/discover/tags/z50II?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#z50II</a> 27.5mm (aps-c) f/4.5 1/25s ISO1250<br> <br> <a href="https://pixelfed.social/discover/tags/textures?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#textures</a> <a href="https://pixelfed.social/discover/tags/abstraction?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#abstraction</a> <a href="https://pixelfed.social/discover/tags/geometry?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#geometry</a> <a href="https://pixelfed.social/discover/tags/blackandwhite?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#blackandwhite</a> <a href="https://pixelfed.social/discover/tags/blackandwhitephotography?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#blackandwhitephotography</a> <a href="https://pixelfed.social/discover/tags/monochrome?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#monochrome</a> <a href="https://pixelfed.social/discover/tags/bnw?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#bnw</a> <a href="https://pixelfed.social/discover/tags/Coimbra?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#Coimbra</a> <a href="https://pixelfed.social/discover/tags/Portugal?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#Portugal</a> <a href="https://pixelfed.social/discover/tags/travel?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#travel</a> <a href="https://pixelfed.social/discover/tags/travelphotography?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#travelphotography</a> <a href="https://pixelfed.social/discover/tags/architecture?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#architecture</a> <a href="https://pixelfed.social/discover/tags/architecturephotography?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#architecturephotography</a> <a href="https://pixelfed.social/discover/tags/university?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#university</a> <a href="https://pixelfed.social/discover/tags/classroom?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#classroom</a><br> <a href="https://pixelfed.social/discover/tags/urbanexploration?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#urbanexploration</a> <a href="https://pixelfed.social/discover/tags/urban?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#urban</a> <a href="https://pixelfed.social/discover/tags/urbanphotography?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#urbanphotography</a> <a href="https://pixelfed.social/discover/tags/photography?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#photography</a> <a href="https://pixelfed.social/discover/tags/amateurphotography?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#amateurphotography</a> <a href="https://pixelfed.social/discover/tags/fediphoto?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#fediphoto</a> <a href="https://pixelfed.social/discover/tags/mastoart?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#mastoart</a> <a href="https://pixelfed.social/discover/tags/dailypicture?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#dailypicture</a> <a href="https://pixelfed.social/discover/tags/dailyphoto?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#dailyphoto</a><br> <a class="u-url" href="https://pixelfed.social/@photography@a.gup.pe" rel="nofollow noopener" target="_blank">@photography@a.gup.pe</a>
foldworks<p>Eye-popping fractal floor tiles, Aswan, Egypt</p><p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a> <a href="https://mathstodon.xyz/tags/TravelPhotography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TravelPhotography</span></a> <a href="https://mathstodon.xyz/tags/Fractal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Fractal</span></a></p>
n-gons<p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> snaking nonagons on a starry sky.</p><p><a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/Tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/MathsArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathsArt</span></a></p>
Vassil Nikolov | Васил Николов<p>Do you grok simple differential geometry?<br>An exercise.</p><p>How do these _two_ things:</p><p>• curvature<br>• torsion</p><p>relate<br>to these _three_ things:</p><p>• pitch<br>• roll<br>• yaw</p><p>(considering that airplanes move along three-dimensional curves)?</p><p><a href="https://ieji.de/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a><br><a href="https://ieji.de/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a></p>
Dani Laura (they/she/he)<p>I have discovered another non-trivial rectangle partition into scaled copies of itself, with aspect ratio the fourth root of 2 (first picture). I've not found on-line any mention of it. Of course swapping rectangle positions more similar partitions can be made. In the next two figures two of the non-periodic tilings which can be derived from those partitions. As this rectangle is closer to a square than the others I know with this property, it is more suited to do a tiling where the amount of splitting depends on the distance of the tiles to the center of the canvas (last picture). I have changed the code which computes colours so that they can be chosen more precisely and not by a single equation.<br><a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicArt</span></a> <a href="https://mathstodon.xyz/tags/AbstractArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AbstractArt</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a></p>
foldworks<p>Here’s the other side, part- and fully-assembled. Some units don’t fit as well as the front side.</p><p>I guess the 90-unit QRSTUVWXYZ (10 nine-pointed stars) is next?</p><p><a href="https://mathstodon.xyz/tags/star" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>star</span></a> <a href="https://mathstodon.xyz/tags/origami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>origami</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/polyhedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polyhedron</span></a> <a href="https://mathstodon.xyz/tags/ModularOrigami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ModularOrigami</span></a> <a href="https://mathstodon.xyz/tags/craft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>craft</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a> <a href="https://mathstodon.xyz/tags/PaperCraft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PaperCraft</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/ArtistOnMastodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtistOnMastodon</span></a> <a href="https://mathstodon.xyz/tags/ArtistsOnMastodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtistsOnMastodon</span></a> <a href="https://mathstodon.xyz/tags/artwork" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>artwork</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/art" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>art</span></a> <a href="https://mathstodon.xyz/tags/artist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>artist</span></a> <a href="https://mathstodon.xyz/tags/arts" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arts</span></a> <a href="https://mathstodon.xyz/tags/arte" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arte</span></a> <a href="https://mathstodon.xyz/tags/designer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>designer</span></a> <a href="https://mathstodon.xyz/tags/MastoArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MastoArt</span></a> <a href="https://mathstodon.xyz/tags/FediArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FediArt</span></a> <a href="https://mathstodon.xyz/tags/CreativeToots" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeToots</span></a></p>
foldworks<p>And the 56-unit RSTUVWXYZ Stars: eight intersecting seven-pointed stars. </p><p>Modular origami folded from 5:4 rectangles cut from eight sheets of colour A4 paper.</p><p><a href="https://mathstodon.xyz/tags/star" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>star</span></a> <a href="https://mathstodon.xyz/tags/origami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>origami</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/polyhedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polyhedron</span></a> <a href="https://mathstodon.xyz/tags/ModularOrigami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ModularOrigami</span></a> <a href="https://mathstodon.xyz/tags/craft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>craft</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a> <a href="https://mathstodon.xyz/tags/PaperCraft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PaperCraft</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/ArtistOnMastodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtistOnMastodon</span></a> <a href="https://mathstodon.xyz/tags/ArtistsOnMastodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtistsOnMastodon</span></a> <a href="https://mathstodon.xyz/tags/artwork" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>artwork</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/art" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>art</span></a> <a href="https://mathstodon.xyz/tags/artist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>artist</span></a> <a href="https://mathstodon.xyz/tags/arts" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arts</span></a> <a href="https://mathstodon.xyz/tags/arte" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arte</span></a> <a href="https://mathstodon.xyz/tags/designer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>designer</span></a> <a href="https://mathstodon.xyz/tags/MastoArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MastoArt</span></a> <a href="https://mathstodon.xyz/tags/FediArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FediArt</span></a> <a href="https://mathstodon.xyz/tags/CreativeToots" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeToots</span></a></p>
Jason Baluyut<p><a href="https://ohai.social/tags/FensterFreitag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FensterFreitag</span></a> <br>A window glancing sideways.</p><p><a href="https://ohai.social/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a> <a href="https://ohai.social/tags/architecture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>architecture</span></a> <a href="https://ohai.social/tags/windows" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>windows</span></a> <a href="https://ohai.social/tags/WindowFriday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WindowFriday</span></a> <a href="https://ohai.social/tags/lightandshadow" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lightandshadow</span></a> <a href="https://ohai.social/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://ohai.social/tags/nyc" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nyc</span></a></p>
SusiBent.<br> <br> <br> <br> <a href="https://pixelfed.de/discover/tags/fensterfreitag?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#fensterfreitag</a> <a href="https://pixelfed.de/discover/tags/windowsonfriday?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#windowsonfriday</a> <a href="https://pixelfed.de/discover/tags/windows?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#windows</a> <a href="https://pixelfed.de/discover/tags/architecture?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#architecture</a> <a href="https://pixelfed.de/discover/tags/abstractinarchitecture?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#abstractinarchitecture</a> <a href="https://pixelfed.de/discover/tags/architecturephotography?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#architecturephotography</a> <a href="https://pixelfed.de/discover/tags/geometry?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#geometry</a> <a href="https://pixelfed.de/discover/tags/bnw?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#bnw</a> <a href="https://pixelfed.de/discover/tags/bnwphotography?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#bnwphotography</a>
Ross of Ottawa<p>Elementary-school <a href="https://mastodon.social/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> could solve the US problem with <a href="https://mastodon.social/tags/gerrymandering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gerrymandering</span></a>. The rule should be that any electoral district map can only use say six or seven vertices. </p><p>No crazy maps cherry-picking a neighbourhood of whackjobs to cancel out a diverse one. </p><p>You want a corner there? You've gotta lose one somewhere else. Simple shapes, not convoluted ones.</p><p><a href="https://mastodon.social/tags/uspoli" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>uspoli</span></a></p>
foldworks<p>Pavement tiling, Hurghada, Egypt</p><p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a> <a href="https://mathstodon.xyz/tags/TravelPhotography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TravelPhotography</span></a></p>
Dani Laura (they/she/he)<p>More tesselations produced by the partitions. First two related to the root of silver ratio rectangles. Third is related to the golden one, applying an algorithm to colour each rectangle depending on its ancestors sizes. Finally, and artistic rendition of the golden partition where each rectangle is shrunk before partition to produce a frame.<br><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicArt</span></a></p>