eupolicy.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
This Mastodon server is a friendly and respectful discussion space for people working in areas related to EU policy. When you request to create an account, please tell us something about you.

Server stats:

224
active users

#fluiddynamics

1 post1 participant0 posts today
Nicole Sharp<p><strong>How Insects Fly in the Rain</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/superhydro1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/superhydro2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/superhydro3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Getting caught in the rain is annoying for us but has the potential to be deadly for smaller creatures like insects. So how do they survive a deluge? First, they don’t resist a raindrop, and second, they have the kinds of surfaces water likes to roll or bounce off. The key to this second ability is micro- and nanoscale roughness. Surfaces like butterfly wings, water strider feet, and leaf surfaces contain lots of tiny gaps where air gets caught. Water’s cohesion — its attraction to itself — is large enough that water drops won’t squeeze into these tiny spaces. Instead, like the ball it resembles, a water drop slides or bounces away. (Video and image credit: Be Smart)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/butterfly/" target="_blank">#butterfly</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/cohesion/" target="_blank">#cohesion</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/hydrophobic/" target="_blank">#hydrophobic</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/insects/" target="_blank">#insects</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/superhydrophobic/" target="_blank">#superhydrophobic</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-roughness/" target="_blank">#surfaceRoughness</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-tension/" target="_blank">#surfaceTension</a></p>
Nicole Sharp<p><strong>Whale Migration Carries Nutrients</strong></p><p>When it comes to the movement of nutrients in the ocean, we think of run-off from rivers, upwelling along coasts, and convective currents. We don’t typically think about animal migrations, but a <a href="https://doi.org/10.1038/s41467-025-56123-2" rel="nofollow noopener noreferrer" target="_blank">new study</a> of baleen whales (including species like humpbacks and right whales) suggests that these massive mammals provide a small but critical spreading service.</p><p>These whales feed in cold, nutrient-rich waters, like those in the Arctic, then travel thousands of kilometers to warm but nutrient-poor tropical waters to birth and raise calves. During that time, mothers do not hunt or eat; they live off their fat stores, which they also use to make milk for their offspring. Although they’re not eating during this time, they do still urinate, and it’s this activity that, according to researchers, adds some 3,000 tons of critical nitrogen to these areas. Since nitrogen is often a limited resource in these tropical waters, the whales’ urine may act like a fertilizer shipment for other species in their breeding grounds. (Image credit: <a href="https://unsplash.com/photos/a-humpback-whale-swims-under-the-water-WeUIHNHbs6o" rel="nofollow noopener noreferrer" target="_blank">C. Le Duc</a>; research credit: <a href="https://doi.org/10.1038/s41467-025-56123-2" rel="nofollow noopener noreferrer" target="_blank">J. Roman et al.</a>; via <a href="https://doi.org/10.1029/2025EO250171" rel="nofollow noopener noreferrer" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/nutrient-transport/" target="_blank">#nutrientTransport</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/whales/" target="_blank">#whales</a></p>
Prof. R. I. Sujith<p>Great to host Dr. Anagha Madhusudanan (IISc Bangalore) INSPIRE faculty. She presented her work on Navier-Stokes-based linear models for intermittent &amp; viscosity-stratified flows.<br> Wishing her all the best!<br> <a href="https://mastodon.social/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a> <a href="https://mastodon.social/tags/Research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Research</span></a> <a href="https://mastodon.social/tags/IITMadras" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>IITMadras</span></a> <a href="https://mastodon.social/tags/professor" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>professor</span></a> <a href="https://mastodon.social/tags/Academia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Academia</span></a> <a href="https://mastodon.social/tags/Aerospace" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Aerospace</span></a> <a href="https://mastodon.social/tags/IISc" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>IISc</span></a></p>
Nicole Sharp<p><strong>Tracking Insects in Flight</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/flight_track1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/flight_track2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/flight_track3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Insects are masters of a challenging flight regime; their agility, stability, and control far outstrip anything we’ve built at their size. But to even understand how they accomplish this, researchers must manage to capture those maneuvers in the first place. Insects don’t stay in one small area, which is what the typical fixed camera motion capture set-up requires. Instead, one group of researchers has <a href="https://doi.org/10.1126/scirobotics.adm7689" rel="nofollow noopener noreferrer" target="_blank">designed a system</a> with a moveable mirror that tracks an insect’s motion in real-time, ensuring that the camera stays fixed on the insect even as it traverses a room or — for the drone-mounted version — a field. </p><p>Real-time motion tracking means that researchers can better capture detailed footage of the insect’s maneuvers in a lab environment, or they can head into the field to follow insects in the wild. Imagine tracking individual pollinators through a full day of gathering or watching how a bumblebee responds to getting hit by a raindrop mid-flight. (Video and image credit: Science; research credit: <a href="https://doi.org/10.1126/scirobotics.adm7689" rel="nofollow noopener noreferrer" target="_blank">T. Vo-Doan et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flapping-flight/" target="_blank">#flappingFlight</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/insect-flight/" target="_blank">#insectFlight</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Interstellar Jets</strong></p><p>This JWST image shows a couple of <a href="https://en.wikipedia.org/wiki/Herbig%E2%80%93Haro_object" rel="nofollow noopener noreferrer" target="_blank">Herbig-Hero objects</a>, seen in infrared. These bright objects form when jets of fast-moving energetic particles are expelled from the poles of a newborn star. Those particles hit pockets of gas and dust, forming glowing, hot shock waves like those seen here in red. The star that birthed the object is out of view to the lower-right. The bright blue light surrounded by red spirals that sits near the tip of the shock waves is actually a distant spiral galaxy that happens to be aligned with our viewpoint. (Image credit: NASA/ESA/CSA/STScI/JWST; via <a href="https://apod.nasa.gov/apod/ap250409.html?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">APOD</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astrophysics/" target="_blank">#astrophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/jets/" target="_blank">#jets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/shockwave/" target="_blank">#shockwave</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/stellar-evolution/" target="_blank">#stellarEvolution</a></p>
Nicole Sharp<p><strong>Inside Hail Formation</strong></p><p>Conventional wisdom suggests that hailstones form over the course of repeated trips up and down through a storm, but a <a href="https://doi.org/10.1007/s00376-024-4211-x" rel="nofollow noopener noreferrer" target="_blank">new study suggests</a> that formation method is less common than assumed. Researchers studied the isotope signatures in the layers of 27 hailstones to work out each stone’s formation history. They found that most hailstones (N = 16) grew without any reversal in direction. Another 7 only saw a single period when upwinds lifted them, and only 1 of the hailstones had cycled down-and-up more than once. They did find, however, that hailstones larger than 25mm (1 inch) in diameter had at least one period of growth during lifting.</p><p>So smaller hailstones likely don’t cycle up and down in a storm, but the largest (and most destructive) hailstones will climb at least once before their final descent. (Image credit: <a href="https://unsplash.com/photos/a-close-up-of-white-flowers-wvbsS58PoNA" rel="nofollow noopener noreferrer" target="_blank">D. Trinks</a>; research credit: <a href="https://doi.org/10.1007/s00376-024-4211-x" rel="nofollow noopener noreferrer" target="_blank">X. Lin et al.</a>; via <a href="https://gizmodo.com/hail-doesnt-form-the-way-you-think-scientists-say-2000589938?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/atmospheric-science/" target="_blank">#atmosphericScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice-formation/" target="_blank">#iceFormation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/meteorology/" target="_blank">#meteorology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/thunderstorm/" target="_blank">#thunderstorm</a></p>
Nicole Sharp<p><strong>Creating Liquid Landscapes</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro4.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro5.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro6.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Artist <a href="https://www.terracollage.com/" rel="nofollow noopener noreferrer" target="_blank">Roman De Giuli</a> excels at creating what appear to be vast landscapes carved by moving water. In reality, these pieces are small-scale flows, created on paper. Now, De Giuli takes us behind the scenes to see how he creates these masterpieces — layering, washing, burning, and repeating to build up the paperscape that eventually hosts the flows we see recorded. The work is meticulous and slow, and the results are incredible. De Giuli’s videos never fail to transport me to a calmer, more pristine version of our world. I can’t wait to see the new series! (Video and image credit: <a href="https://www.terracollage.com/" rel="nofollow noopener noreferrer" target="_blank">R. De Giuli</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>On the Mechanics of Wet Sand</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sandholes1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sandholes2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sandholes3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Sand is a critical component of many built environments. As most of us learn (via sand castle), adding just the right amount of water allows sand to be quite strong. But with too little water — or too much — sand is prone to collapse. For those of us outside the construction industry, we’re most likely to run into this problem on the beach while digging holes in the sand. In this Practical Engineering video, Grady explains the forces that stabilize and destabilize piled sand and where the dangers of excavation lie. (Video and image credit: Practical Engineering)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/civil-engineering/" target="_blank">#civilEngineering</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/granular-material/" target="_blank">#granularMaterial</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/granular-material-2/" target="_blank">#granularMaterial_</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/infrastructure/" target="_blank">#infrastructure</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/shear/" target="_blank">#shear</a></p>
Nicole Sharp<p><strong>Seeking Uranus’s Spin</strong></p><p>Uranus is one of our solar system’s oddest planets. An ice giant, it spins on its side. We originally estimated its rate of rotation using measurements from Voyager 2, the only spacecraft to have visited the planet. But that measurement was so imprecise that within two years, astronomers could no longer use it to predict where the planet’s poles were. Now a <a href="https://www.nature.com/articles/s41550-025-02492-z" rel="nofollow noopener noreferrer" target="_blank">new study</a>, drawing on over a decade of Hubble observations of Uranus’s auroras, has pinned down the planet’s rotation rate far more precisely: 17 hours, 14 minutes, and 52 seconds. While that’s within the original measurement’s 36-second margin of error, the new measurement has a margin of error of only 0.036 seconds. In addition to helping plan a theoretical future Uranus mission, this more accurate rotation rate allows researchers to reexamine decades of data, now with certainty about the planet’s orientation at the time of the observation. (Image credit: ESA/Hubble, NASA, L. Lamy, L. Sromovsky; research credit: <a href="https://www.nature.com/articles/s41550-025-02492-z" rel="nofollow noopener noreferrer" target="_blank">L. Lamy et al.</a>; via <a href="https://gizmodo.com/a-long-held-assumption-about-uranus-just-got-upended-2000586293?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Gizmodo</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astronomy/" target="_blank">#astronomy</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/aurora/" target="_blank">#aurora</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/uranus/" target="_blank">#Uranus</a></p>
DeWuyt<p>New to Mastodon and excited to share moments like this—Caught this elegant trace of a wingtip vortex slicing through the sky—possibly the outer arc of a horseshoe vortex. These swirling trails reveal the invisible physics of lift in action!”<br><a href="https://mastodon.social/tags/HorseshoeVortex" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HorseshoeVortex</span></a> <a href="https://mastodon.social/tags/WingtipVortex" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WingtipVortex</span></a> <a href="https://mastodon.social/tags/Aviation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Aviation</span></a> <a href="https://mastodon.social/tags/Stormchasing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Stormchasing</span></a> <a href="https://mastodon.social/tags/Skywatching" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Skywatching</span></a> <a href="https://mastodon.social/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a> <a href="https://mastodon.social/tags/Photography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Photography</span></a> <a href="https://mastodon.social/tags/Introduction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Introduction</span></a></p>
Nicole Sharp<p><strong>Martian Mud Volcanoes</strong></p><p>Mars features mounds that resemble our terrestrial <a href="https://en.wikipedia.org/wiki/Mud_volcano" rel="nofollow noopener noreferrer" target="_blank">mud volcanoes</a>, suggesting that a similar form of mudflow occurs on Mars. But Mars’ thin atmosphere and frigid temperatures mean that water — a prime ingredient of any mud — is almost always in either solid or gaseous form on the planet. So <a href="https://doi.org/10.1038/s43247-025-02110-w" rel="nofollow noopener noreferrer" target="_blank">researchers explored</a> whether salty muds could flow under Martian conditions. They tested a variety of salts, at different concentrations, in a low-pressure chamber calibrated to Mars-like temperatures and pressures. The salts lowered water’s freezing point, allowing the muds to remain fluid. Even a relatively small amount of sodium chloride — 2.5% by weight — allowed muds to flow far. The team also found that the salt content affected the shape the flowing mud took, with flows ranging from narrow, ropey patterns to broad, even sheets. (Image credit: <a href="https://commons.wikimedia.org/wiki/File:Gryphons_at_the_central_crater_of_the_Dashgil_mud_volcano_in_Azerbaijan_(130).JPG" rel="nofollow noopener noreferrer" target="_blank">P. Brož/Wikimedia Commons</a>; research credit: <a href="https://doi.org/10.1038/s43247-025-02110-w" rel="nofollow noopener noreferrer" target="_blank">O. Krýza et al.</a>; via <a href="https://eos.org/articles/salt-may-be-key-to-martian-mudflows?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mars/" target="_blank">#Mars</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mud/" target="_blank">#mud</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mud-pots/" target="_blank">#mudPots</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mud-volcano/" target="_blank">#mudVolcano</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscous-flow/" target="_blank">#viscousFlow</a></p>
Nicole Sharp<p><strong>Quietening Drones</strong></p><p>A drone’s noisiness is one of its major downfalls. Standard drones are obnoxiously loud and disruptive for both humans and animals, one reason that they’re not allowed in many places. This flow visualization, <a href="https://www.youtube.com/watch?v=5yaAFLpLmVg" rel="nofollow noopener noreferrer" target="_blank">courtesy of the Slow Mo Guys</a>, helps show why. The image above shows a standard off-the-shelf drone rotor. As each blade passes through the smoke, it sheds a wingtip vortex. (Note that these vortices are constantly coming off the blade, but we only see them where they intersect with the smoke.) As the blades go by, a constant stream of regularly-spaced vortices marches downstream of the rotor. This regular spacing creates the dominant acoustic frequency that we hear from the drone.</p> Animation of wingtip vortices coming off a drone rotor with blades of different lengths. This causes interactions between the vortices, which helps disrupt the drone’s noise. <p>To counter that, the company Wing uses a rotor with blades of different lengths (bottom image). This staggers the location of the shed vortices and causes some later vortices to spin up with their downstream neighbor. These interactions break up that regular spacing that generates the drone’s dominant acoustic frequency. Overall, that makes the drone sound quieter, likely without a large impact to the amount of lift it creates. (Image credit: <a href="https://www.youtube.com/watch?v=5yaAFLpLmVg" rel="nofollow noopener noreferrer" target="_blank">The Slow Mo Guys</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/acoustics/" target="_blank">#acoustics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/propeller/" target="_blank">#propeller</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/propeller-vortex/" target="_blank">#propellerVortex</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/wingtip-vortices/" target="_blank">#wingtipVortices</a></p>
Nicole Sharp<p><strong>Climate Change and the Equatorial Cold Tongue</strong></p><p>A cold region of Pacific waters stretches westward along the equator from the coast of Ecuador. Known as the equatorial cold tongue, this region exists because trade winds push surface waters away from the equator and allow colder, deeper waters to surface. Previous climate models have predicted warming for this region, but instead we’ve observed cooling — or at least a resistance to warming. <a href="https://physics.aps.org/articles/v18/21?utm_campaign=weekly&amp;utm_medium=email&amp;utm_source=emailalert&amp;__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Now researchers</a> using decades of data and new simulations report that the observed cooling trend is, in fact, a result of human-caused climate changes. Like the cold tongue itself, this new cooling comes from wind patterns that change ocean mixing.</p><p>As pleasant as a cooling streak sounds, this trend has unfortunate consequences elsewhere. Scientists have found that this cooling has a direct effect on drought in East Africa and southwestern North America. (Image credit: J. Shoer; via <a href="https://physics.aps.org/articles/v18/21?utm_campaign=weekly&amp;utm_medium=email&amp;utm_source=emailalert&amp;__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">APS News</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/atmospheric-science/" target="_blank">#atmosphericScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/climate-change/" target="_blank">#climateChange</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/oceanography/" target="_blank">#oceanography</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Matt<p>The first law of Fluid Dynamics:</p><p>If you walk too quickly, you WILL spill your drink.</p><p><a href="https://mas.to/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a></p>
Nicole Sharp<p><strong>Hot Droplets Bounce</strong></p><p>In the Leidenfrost effect, room-temperature droplets bounce and skitter off a surface much hotter than the drop’s boiling point. With those droplets, a layer of vapor cushions them and insulates them from the hot surface. In today’s study, researchers instead used hot or burning drops (above) and observed how they impact a room-temperature surface. While room-temperature droplets hit and stuck (below), hot and burning droplets bounced (above).</p><p>In this case, the cushioning air layer doesn’t come from vaporization. Instead, the bottom of the falling drop cools faster than the rest of it, increasing the local surface tension. That increase in surface tension creates a Marangoni flow that pulls fluid down along the edges of the drop. That flow drags nearby air with it, creating the cushioning layer that lets the drop bounce. In this case, the authors called the phenomenon “self-lubricating bouncing.” (Image and research credit: <a href="https://doi.org/10.1016/j.newton.2025.100014" rel="nofollow noopener noreferrer" target="_blank">Y. Liu et al.</a>; via <a href="https://arstechnica.com/science/2025/03/these-hot-oil-droplets-can-bounce-off-any-surface/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Ars Technica</a>)</p> <p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/bouncing-droplets/" target="_blank">#bouncingDroplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplet-impact/" target="_blank">#dropletImpact</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/entrainment/" target="_blank">#entrainment</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/marangoni-effect/" target="_blank">#marangoniEffect</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Bifurcating Waterways</strong></p><p>Your typical river has a single water basin and drains along a river or two on its way to the sea. But there are a handful of rivers and lakes that don’t obey our usual expectations. Some rivers flow in two directions. Some lakes have multiple outlets, each to a separate water basin. That means that water from a single lake can wind up in two entirely different bodies of water.</p><p>The most famous example of these odd waterways is South America’s Casiquiare River, seen running north to south in the image above. This navigable river connects the Orinoco River (flowing east to west in this image) with the Rio Negro (not pictured). Since the Rio Negro eventually joins the Amazon, the Casiquiare River’s meandering, nearly-flat course connects the continent’s two largest basins: the Orinoco and the Amazon.</p><p>For more strange waterways across the Americas, check out <a href="https://doi.org/10.1029/2024WR039824" rel="nofollow noopener noreferrer" target="_blank">this review paper</a>, which describes a total of 9 such hydrological head-scratchers. (Image credit: <a href="https://www.flickr.com/photos/observacao-da-terra/31909257768/" rel="nofollow noopener noreferrer" target="_blank">Coordenação-Geral de Observação da Terra/INPE</a>; research credit: <a href="https://doi.org/10.1029/2024WR039824" rel="nofollow noopener noreferrer" target="_blank">R. Sowby and A. Siegel</a>; via <a href="https://eos.org/research-spotlights/the-rivers-that-science-says-shouldnt-exist?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Eos</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rivers/" target="_blank">#rivers</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-hydrology/" target="_blank">#surfaceHydrology</a></p>
Nicole Sharp<p><strong>Inside an Alien Atmosphere</strong></p><p>Studying the physics of planetary atmospheres is challenging, not least because we only have a handful of examples to work from in our own solar system. So it’s exciting that <a href="https://doi.org/10.1038/s41586-025-08664-1" rel="nofollow noopener noreferrer" target="_blank">researchers have unveiled</a> our first look at the 3D structure of an exoplanet‘s atmosphere. </p><p>Using ground-based observations, researchers studied WASP-121b, also known as Tylos, an ultra-hot Jupiter that circles its star in only 30 Earth hours. One face of the planet always faces its star while the other faces into space. The team found that the exoplanet has a flow deep in the atmosphere that carries iron from the hot daytime side to the colder night side. Higher up, the atmosphere boasts a super-fast jet-stream that doubles in speed (from an estimated 13 kilometers per second to 26 kilometers per second) as it crosses from the morning terminator to the evening. As one researcher observed, the planet’s everyday winds make Earth’s worst hurricanes look tame. (Image credit: <a href="https://www.eso.org/public/images/eso2504b/" rel="nofollow noopener noreferrer" target="_blank">ESO/M. Kornmesser</a>; research credit: <a href="https://doi.org/10.1038/s41586-025-08664-1" rel="nofollow noopener noreferrer" target="_blank">J. Seidel et al.</a>; via <a href="https://gizmodo.com/first-3d-map-of-an-exoplanets-atmosphere-reveals-bizarre-weather-2000566049?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astronomy/" target="_blank">#astronomy</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/atmospheric-science/" target="_blank">#atmosphericScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/exoplanets/" target="_blank">#exoplanets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Steven Carneiro<p>Advancing mathematical physics for fluid motion:<br><a href="https://social.vivaldi.net/tags/fluiddynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fluiddynamics</span></a> <a href="https://social.vivaldi.net/tags/motion" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>motion</span></a> <a href="https://social.vivaldi.net/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://social.vivaldi.net/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a> <a href="https://social.vivaldi.net/tags/research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>research</span></a><br>🤓</p><p><a href="https://www.scientificamerican.com/article/lofty-math-problem-called-hilberts-sixth-closer-to-being-solved/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">scientificamerican.com/article</span><span class="invisible">/lofty-math-problem-called-hilberts-sixth-closer-to-being-solved/</span></a></p>
Jochen Fromm<p>Researchers claim to have solved Hilbert’s sixth problem by unifying three theories of <a href="https://fediscience.org/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a> at different levels of granularity:</p><p>+ Newton’s laws of motion at the microscopic level where fluids are composed of particles - little billiard balls bopping around and occasionally colliding</p><p>+ The Boltzmann equation at the mesoscopic level where the equation considers the likely behavior of a typical particle</p><p>+ Euler and <a href="https://fediscience.org/tags/NavierStokes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NavierStokes</span></a> equations at the macroscopic level where the fluids are a single continuous substance</p><p><a href="https://www.scientificamerican.com/article/lofty-math-problem-called-hilberts-sixth-closer-to-being-solved" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">scientificamerican.com/article</span><span class="invisible">/lofty-math-problem-called-hilberts-sixth-closer-to-being-solved</span></a></p><p>Preprint <a href="https://arxiv.org/abs/2503.01800" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2503.01800</span><span class="invisible"></span></a></p>
Nicole Sharp<p><strong>Flying Without a Rudder</strong></p><p>Aircraft typically use a vertical tail to keep the craft from rolling or yawing. Birds, on the other hand, maneuver their wings and tail feathers to counter unwanted motions. <a href="https://doi.org/10.1126/scirobotics.ado4535" rel="nofollow noopener noreferrer" target="_blank">Researchers found</a> that the list of necessary adjustments is quite small: just 4 for the tail and 2 for the wings. Implementing those 6 controllable degrees of freedom on their bird-inspired PigeonBot II allowed the biorobot to fly steadily, even in turbulent conditions, without a rudder. Adapting such flight control to the less flexible surfaces of a typical aircraft will take time and creativity, but the savings in mass and drag could be worth it. (Image credit: E. Chang/Lentink Lab; research credit: <a href="https://doi.org/10.1126/scirobotics.ado4535" rel="nofollow noopener noreferrer" target="_blank">E. Chang et al.</a>; via <a href="https://doi.org/10.1063/pt.usov.ggrh" rel="nofollow noopener noreferrer" target="_blank">Physics Today</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biorobotics/" target="_blank">#biorobotics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/bird-flight/" target="_blank">#birdFlight</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/birds/" target="_blank">#birds</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flight-control/" target="_blank">#flightControl</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>