eupolicy.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
This Mastodon server is a friendly and respectful discussion space for people working in areas related to EU policy. When you request to create an account, please tell us something about you.

Server stats:

205
active users

#compneuro

0 posts0 participants0 posts today
Dan Goodman<p>Is anarchist science possible?</p><p>As an experiment, we got together a large group of computational neuroscientists from around the world to work on a single project without top down direction. Read on to find out what happened.</p><p>The project started as a tutorial on a new technique at the <span class="h-card" translate="no"><a href="https://neuromatch.social/@CosyneMeeting" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>CosyneMeeting</span></a></span> 2022. We realised that the technique was easy and cheap for anyone to use with a lot of low hanging fruit.</p><p><a href="https://neural-reckoning.github.io/cosyne-tutorial-2022/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">neural-reckoning.github.io/cos</span><span class="invisible">yne-tutorial-2022/</span></a></p><p>At the tutorial we announced a 1-2 year open research project that anyone could join, starting from the materials of the tutorial, and a few starting questions we found interesting, but with no other constraints. We were inspired by the Polymath Project in mathematics.</p><p><a href="https://en.wikipedia.org/wiki/Polymath_Project" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Polymath</span><span class="invisible">_Project</span></a></p><p>31 people contributed to the project, joining for monthly meetings to discuss progress. All code was publicly available throughout, and when we started writing up the work in progress was also fully public. You can see that version here: <a href="https://comob-project.github.io/snn-sound-localization/paper" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">comob-project.github.io/snn-so</span><span class="invisible">und-localization/paper</span></a></p><p>Not everyone who was involved made it to the paper (didn't respond or couldn't find contact details), and not all are on Mastodon, but authors include: <span class="h-card" translate="no"><a href="https://neuromatch.social/@marcusghosh" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>marcusghosh</span></a></span> <span class="h-card" translate="no"><a href="https://fediscience.org/@TomasFiers" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>TomasFiers</span></a></span> <br><span class="h-card" translate="no"><a href="https://neuromatch.social/@GabrielBena" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>GabrielBena</span></a></span> <span class="h-card" translate="no"><a href="https://sigmoid.social/@rory" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>rory</span></a></span> </p><p>We used GitHub and Jupyter notebooks to coordinate development, with a website showing everyone's current code and results to make collaboration easier. We used <span class="h-card" translate="no"><a href="https://fosstodon.org/@mystmarkdown" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>mystmarkdown</span></a></span> and GitHub actions to automate this.</p><p><a href="https://comob-project.github.io/snn-sound-localization/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">comob-project.github.io/snn-so</span><span class="invisible">und-localization/</span></a></p><p>So how did it work out? Well, some things went well and others not so well. We published a paper with our results and reflections on the process. If you're interested in spiking neural networks, sound localisation, or anarchist science, check it out:</p><p><a href="https://www.eneuro.org/content/12/7/ENEURO.0383-24.2025" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">eneuro.org/content/12/7/ENEURO</span><span class="invisible">.0383-24.2025</span></a></p><p>Generally, the infrastructure we built worked well, as did the monthly meetings. Starting from the tutorial was a good decision because it gave everyone a common reference and meant they could easily get started.</p><p>However, the lack of direction meant that we didn't achieve very coherent results in the end. We don't think this is a catastrophic problem, but when we try again, this is something we'd like to address. If you have thoughts or would like to be involved, get in touch!</p><p>Ultimately, we didn't achieve a scientific breakthrough in this project, but we did show that without top down direction or any specific funding, we could organise a large group of scientists to work together and publish their research in a good journal. We think that's a hopeful sign for the future!</p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a> <a href="https://neuromatch.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a> <a href="https://neuromatch.social/tags/anarchism" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>anarchism</span></a> <a href="https://neuromatch.social/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a></p>
Fabrizio Musacchio<p>🧠 New <a href="https://sigmoid.social/tags/preprint" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>preprint</span></a> by Hosseini et al. (2025) from Graziana Gatto’s lab: <a href="https://sigmoid.social/tags/AutoGaitA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AutoGaitA</span></a>, a <a href="https://sigmoid.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> toolbox for universal <a href="https://sigmoid.social/tags/kinematic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>kinematic</span></a> analysis of <a href="https://sigmoid.social/tags/motor" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>motor</span></a> programs across species, perturbations and <a href="https://sigmoid.social/tags/behaviours" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>behaviours</span></a>. Flies, mice and humans all show age-dependent loss of propulsive strength 🚶‍♀️A promising tool 💪 for cross-species motor program analysis in my view:</p><p>🌍 <a href="https://doi.org/10.1101/2024.04.14.589409" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1101/2024.04.14.589</span><span class="invisible">409</span></a></p><p><a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/MotorControl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MotorControl</span></a> <a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a> <a href="https://sigmoid.social/tags/OpenSource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenSource</span></a></p>
Fabrizio Musacchio<p>🧠👀 Merits of Curiosity. Gruaz et al. (2025) compare 6 intrinsic motivation signals in simulated agents. Turns out: curiosity isn’t one thing. The best-performing agents combine <a href="https://sigmoid.social/tags/novelty" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>novelty</span></a> and <a href="https://sigmoid.social/tags/InformationGain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InformationGain</span></a>, revealing how environment and goal shape exploration. Cool <a href="https://sigmoid.social/tags/modeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modeling</span></a> paper with implications for <a href="https://sigmoid.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a>, <a href="https://sigmoid.social/tags/RL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RL</span></a>, and theories of human <a href="https://sigmoid.social/tags/curiosity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>curiosity</span></a>.</p><p>🌍 <a href="https://direct.mit.edu/opmi/article/doi/10.1162/opmi.a.9/132758" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">direct.mit.edu/opmi/article/do</span><span class="invisible">i/10.1162/opmi.a.9/132758</span></a></p><p><a href="https://sigmoid.social/tags/NeuroAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuroAI</span></a> <a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a></p>
Fabrizio Musacchio<p>I recently played around with <a href="https://sigmoid.social/tags/RateModels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RateModels</span></a> using <a href="https://sigmoid.social/tags/NESTsimulator" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NESTsimulator</span></a>. Compared to <a href="https://sigmoid.social/tags/SNN" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SNN</span></a>, RM focus on average firing rates of <a href="https://sigmoid.social/tags/NeuronPopulations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuronPopulations</span></a>, simplifying analysis of large networks. They effectively capture collective dynamics like <a href="https://sigmoid.social/tags/oscillations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>oscillations</span></a> and <a href="https://sigmoid.social/tags/synchronization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>synchronization</span></a>, though they miss precise spike timing details. Thus, both approaches have their merits. Here is a brief overview:</p><p>🌍 <a href="https://www.fabriziomusacchio.com/blog/2025-08-28-rate_models/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">fabriziomusacchio.com/blog/202</span><span class="invisible">5-08-28-rate_models/</span></a></p><p><a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://sigmoid.social/tags/PythonTutorial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PythonTutorial</span></a> <a href="https://sigmoid.social/tags/SpikingNeuralNetwork" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpikingNeuralNetwork</span></a></p>
Fabrizio Musacchio<p>📝 New blog post: <a href="https://sigmoid.social/tags/GapJunctions" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GapJunctions</span></a> (<a href="https://sigmoid.social/tags/ElectricalSynapses" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ElectricalSynapses</span></a>) enable direct electrical and chemical communication between <a href="https://sigmoid.social/tags/neurons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neurons</span></a>, synchronizing activity and supporting rapid signal propagation. Their <a href="https://sigmoid.social/tags/modeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modeling</span></a> is crucial for understanding <a href="https://sigmoid.social/tags/NeuralNetworkDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuralNetworkDynamics</span></a>, <a href="https://sigmoid.social/tags/oscillations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>oscillations</span></a>, and <a href="https://sigmoid.social/tags/brain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brain</span></a> 🧠 function. Here is a brief summary including a small <a href="https://sigmoid.social/tags/PythonTutorial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PythonTutorial</span></a> using the <a href="https://sigmoid.social/tags/NESTsimulator" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NESTsimulator</span></a>.</p><p>🌍 <a href="https://www.fabriziomusacchio.com/blog/2025-08-15-gap_junctions/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">fabriziomusacchio.com/blog/202</span><span class="invisible">5-08-15-gap_junctions/</span></a></p><p><a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://sigmoid.social/tags/OpenSource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenSource</span></a></p>
Fabrizio Musacchio<p>📚 New article by Esparza et al. and <span class="h-card" translate="no"><a href="https://fosstodon.org/@LMPrida" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>LMPrida</span></a></span> : Cell-type-specific <a href="https://sigmoid.social/tags/manifold" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>manifold</span></a> analysis discloses independent parallel <a href="https://sigmoid.social/tags/SpatialMaps" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpatialMaps</span></a> in <a href="https://sigmoid.social/tags/hippocampal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hippocampal</span></a> <a href="https://sigmoid.social/tags/CA1" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CA1</span></a>. Using <a href="https://sigmoid.social/tags/miniscope" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>miniscope</span></a> imaging, they show deep and superficial CA1 <a href="https://sigmoid.social/tags/PyramidalNeurons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PyramidalNeurons</span></a> encode position and running direction via distinct ring manifolds, manipulable via <a href="https://sigmoid.social/tags/chemogenetics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chemogenetics</span></a>. Fascinating for revealing parallel, cell-type–specific spatial topologies 👌</p><p>🌍 <a href="https://doi.org/10.1016/j.neuron.2025.01.022" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1016/j.neuron.2025.</span><span class="invisible">01.022</span></a></p><p><a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a></p>
Elias MB Rau<p>For everyone who can not attend the CCN Conference this year in amsterdam, all keynote lectures can be streamed here:</p><p><a href="https://2025.ccneuro.org/keynote-lectures/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">2025.ccneuro.org/keynote-lectu</span><span class="invisible">res/</span></a></p><p>Full schedule with livestream links here:<br><a href="https://2025.ccneuro.org/schedule-of-events/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">2025.ccneuro.org/schedule-of-e</span><span class="invisible">vents/</span></a></p><p>First off, Nancy Kanwisher at 11.30 am (CET)</p><p>Edit: Not only keynotes but also symposia can be live streamed 🙂 </p><p><a href="https://synapse.cafe/tags/ccn2025" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ccn2025</span></a> <a href="https://synapse.cafe/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://synapse.cafe/tags/cognitivescience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cognitivescience</span></a> <a href="https://synapse.cafe/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a> <a href="https://synapse.cafe/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a></p>
Fabrizio Musacchio<p>📚 New article by O’Bryan et al.: High-level visual representations in the human <a href="https://sigmoid.social/tags/brain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brain</span></a> are aligned with <a href="https://sigmoid.social/tags/LargeLanguageModels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LargeLanguageModels</span></a>.</p><p>The study shows that <a href="https://sigmoid.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a>-derived embeddings can predict brain responses to visual stimuli, revealing shared representational structures between biological and artificial systems.</p><p>🌍 <a href="https://www.nature.com/articles/s42256-025-01072-0" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">nature.com/articles/s42256-025</span><span class="invisible">-01072-0</span></a></p><p><a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a> <a href="https://berlin.social/@freieuniversitaet/115010262932640164" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">berlin.social/@freieuniversita</span><span class="invisible">et/115010262932640164</span></a></p>
Fabrizio Musacchio<p>📚 New preprint by Vafaii, Galor &amp; Yates: Brain-like variational inference. They derive <a href="https://sigmoid.social/tags/SpikingNeuralNetwork" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpikingNeuralNetwork</span></a> dynamics directly from variational free energy minimization via online natural <a href="https://sigmoid.social/tags/GradientDescent" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GradientDescent</span></a>, yielding the iterative Poisson <a href="https://sigmoid.social/tags/VAE" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>VAE</span></a> (iP-VAE) with strong sparsity, reconstruction &amp; <a href="https://sigmoid.social/tags/BiologicalPlausibility" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BiologicalPlausibility</span></a>.</p><p>🌍 <a href="https://arxiv.org/abs/2410.19315" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2410.19315</span><span class="invisible"></span></a><br>🧑‍💻 <a href="https://github.com/hadivafaii/IterativeVAE" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/hadivafaii/Iterativ</span><span class="invisible">eVAE</span></a></p><p><a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://sigmoid.social/tags/SNN" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SNN</span></a> <a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a></p>
Fabrizio Musacchio<p>In our recent <a href="https://sigmoid.social/tags/JournalClub" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JournalClub</span></a>, I presented Genkin et al. (2025), who decode <a href="https://sigmoid.social/tags/DecisionMaking" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DecisionMaking</span></a> in the <a href="https://sigmoid.social/tags/PremotorCortex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PremotorCortex</span></a> of <a href="https://sigmoid.social/tags/macaques" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>macaques</span></a> as low-dimensional <a href="https://sigmoid.social/tags/latent" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>latent</span></a> <a href="https://sigmoid.social/tags/dynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dynamics</span></a> shared across <a href="https://sigmoid.social/tags/NeuralPopulations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuralPopulations</span></a>. Their generative model links tuning curves, spike-time variability, and stimulus-dependent potential landscapes to a common internal decision variable. I summarized and discussed their findings in this blog post:</p><p>📝<a href="https://doi.org/10.1038/s41586-025-09199-1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1038/s41586-025-091</span><span class="invisible">99-1</span></a><br>🌍<a href="https://www.fabriziomusacchio.com/blog/2025-08-01-decoding_decision_making_in_premotor_cortex/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">fabriziomusacchio.com/blog/202</span><span class="invisible">5-08-01-decoding_decision_making_in_premotor_cortex/</span></a></p><p><a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/Cortex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Cortex</span></a></p>
Dan Goodman<p>New preprint with <span class="h-card" translate="no"><a href="https://neuromatch.social/@marcusghosh" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>marcusghosh</span></a></span> on how neural network architecture shapes function. We explored a wide range of architectures, and a family of tasks with components of navigation, decision making under uncertainty, multimodal integration and memory. Performance better explained by "computational traits" like sensitivity and memory, than by architectural features. </p><p><a href="https://www.biorxiv.org/content/10.1101/2025.07.28.667142v1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">biorxiv.org/content/10.1101/20</span><span class="invisible">25.07.28.667142v1</span></a></p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a> <a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a></p>
Fabrizio Musacchio<p>📚 Zhou &amp; Schapiro show in their recent study that a gradient of complementary <a href="https://sigmoid.social/tags/learning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>learning</span></a> systems can emerge through <a href="https://sigmoid.social/tags/metalearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>metalearning</span></a>. Their model self-organizes into subsystems that differ in timescale and representational abstraction – offering a mechanistic account of distributed <a href="https://sigmoid.social/tags/memory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>memory</span></a> architectures across <a href="https://sigmoid.social/tags/cortex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cortex</span></a>.</p><p>🌍 <a href="https://www.biorxiv.org/content/10.1101/2025.07.10.664201v1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">biorxiv.org/content/10.1101/20</span><span class="invisible">25.07.10.664201v1</span></a></p><p><a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a></p>
Fabrizio Musacchio<p>In their study, Morales-Gregorio et al. show that <a href="https://sigmoid.social/tags/NeuralManifolds" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuralManifolds</span></a> in <a href="https://sigmoid.social/tags/V1" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>V1</span></a> shift dynamically under top-down influence from <a href="https://sigmoid.social/tags/V4" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>V4</span></a>. They identify two distinct population activity states – eyes open vs. closed – with notably stronger V4→V1 signaling in the foveal region during eyes-open periods. A cool example of how cognitive context reshapes visual cortical dynamics.</p><p>🌍 <a href="https://www.cell.com/cell-reports/fulltext/S2211-1247(24)00699-5" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">cell.com/cell-reports/fulltext</span><span class="invisible">/S2211-1247(24)00699-5</span></a></p><p><a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/VisualCortex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>VisualCortex</span></a> <a href="https://sigmoid.social/tags/NeuralManifolds" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuralManifolds</span></a> <a href="https://sigmoid.social/tags/SystemsNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SystemsNeuroscience</span></a></p>

New #TeachingMaterial available: Functional Imaging Data Analysis – From Calcium Imaging to Network Dynamics. This course covers the entire workflow from raw #imaging data to functional insights, including #SpikeInference & #PopulationAnalysis. Designed for students and for self-guided learning, with a focus on open content and reproducibility. Feel free to use and share it 🤗

🌍 fabriziomusacchio.com/blog/202

How can we test theories in neuroscience? Take a variable predicted to be important by the theory. It could fail to be observed because it's represented in some nonlinear, even distributed way. Or it could be observed but not be causal because the network is a reservoir. How can we deal with this?

Increasingly feel like this isn't a theoretical problem but a very practical one that comes up all the time. I'd be interested if anyone has seen anything practical that addresses this.

How do babies and blind people learn to localise sound without labelled data? We propose that innate mechanisms can provide coarse-grained error signals to boostrap learning.

New preprint from @yang_chu.

arxiv.org/abs/2001.10605

Thread below 👇

arXiv.orgLearning spatial hearing via innate mechanismsThe acoustic cues used by humans and other animals to localise sounds are subtle, and change during and after development. This means that we need to constantly relearn or recalibrate the auditory spatial map throughout our lifetimes. This is often thought of as a "supervised" learning process where a "teacher" (for example, a parent, or your visual system) tells you whether or not you guessed the location correctly, and you use this information to update your map. However, there is not always an obvious teacher (for example in babies or blind people). Using computational models, we showed that approximate feedback from a simple innate circuit, such as that can distinguish left from right (e.g. the auditory orienting response), is sufficient to learn an accurate full-range spatial auditory map. Moreover, using this mechanism in addition to supervised learning can more robustly maintain the adaptive neural representation. We find several possible neural mechanisms that could underlie this type of learning, and hypothesise that multiple mechanisms may be present and interact with each other. We conclude that when studying spatial hearing, we should not assume that the only source of learning is from the visual system or other supervisory signal. Further study of the proposed mechanisms could allow us to design better rehabilitation programmes to accelerate relearning/recalibration of spatial maps.