eupolicy.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
This Mastodon server is a friendly and respectful discussion space for people working in areas related to EU policy. When you request to create an account, please tell us something about you.

Server stats:

206
active users

#cellseg3d

0 posts0 participants0 posts today
Fabrizio Musacchio<p>To wrap this up: Both tools are easy to test. I highly recommend trying them on your own data to see what works best for your use case.</p><p>I’ll include <a href="https://sigmoid.social/tags/CellSeg3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CellSeg3D</span></a> in our next <a href="https://sigmoid.social/tags/Napari" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Napari</span></a> <a href="https://sigmoid.social/tags/bioimage" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bioimage</span></a> analysis course (<a href="https://www.fabriziomusacchio.com/teaching/teaching_bioimage_analysis/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">fabriziomusacchio.com/teaching</span><span class="invisible">/teaching_bioimage_analysis/</span></a>). Curious what impressions and feedback the students will share. 🧪🔍</p><p>What I really like about <span class="h-card" translate="no"><a href="https://fosstodon.org/@napari" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>napari</span></a></span> is how well it integrates modern <a href="https://sigmoid.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> tools. Great to have such a flexible, evolving <a href="https://sigmoid.social/tags/opensource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opensource</span></a> platform for (bio) <a href="https://sigmoid.social/tags/imageanalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>imageanalysis</span></a>! 👌</p>
Fabrizio Musacchio<p>Tried the same with a more realistic 3D stack from the <a href="https://sigmoid.social/tags/ImageJ" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ImageJ</span></a> sample library.<a href="https://sigmoid.social/tags/Cellpose" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Cellpose</span></a> runs fast and segments very well out of the box.<a href="https://sigmoid.social/tags/CellSeg3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CellSeg3D</span></a> takes considerably longer and seems to segment decently, but I couldn’t get a proper instance <a href="https://sigmoid.social/tags/segmentation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>segmentation</span></a> in the post-processing step (which is recommended as part of its workflow). However, <a href="https://sigmoid.social/tags/CellSeg3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CellSeg3D</span></a> looks very promising — just needs some more time and parameter exploration, I guess. </p><p>I’d recommend giving it a try 👌</p>
Fabrizio Musacchio<p>Tested <a href="https://sigmoid.social/tags/CellSeg3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CellSeg3D</span></a> and <a href="https://sigmoid.social/tags/Cellpose" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Cellpose</span></a> on their example c5image dataset. Both segmentations look reasonable out-of-the-box, without any deep parameter tuning. With some extra effort, one could likely push either further I guess. Overall, both tools perform quite well on this small sample data set.</p>
Fabrizio Musacchio<p>✍️ New in <a href="https://sigmoid.social/tags/eLife" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>eLife</span></a>: <a href="https://sigmoid.social/tags/CellSeg3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CellSeg3D</span></a> introduces <a href="https://sigmoid.social/tags/WNet3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WNet3D</span></a>, a self-supervised 3D <a href="https://sigmoid.social/tags/segmentation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>segmentation</span></a> method for <a href="https://sigmoid.social/tags/microscopy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>microscopy</span></a> data — no labels needed. Claims to outperform <a href="https://sigmoid.social/tags/Cellpose" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Cellpose</span></a>/#StarDist on 4 datasets. Includes <a href="https://sigmoid.social/tags/opensource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opensource</span></a> plugin (<a href="https://sigmoid.social/tags/Napari" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Napari</span></a>) + full 3D annotated <a href="https://sigmoid.social/tags/cortex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cortex</span></a> dataset. Will test it later. </p><p>🌍 <a href="https://elifesciences.org/articles/99848" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">elifesciences.org/articles/998</span><span class="invisible">48</span></a></p><p><a href="https://sigmoid.social/tags/DeepLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DeepLearning</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a></p>